2 resultados para molybdenum carbide
em Université de Lausanne, Switzerland
Resumo:
The structure of the yeast DNA-dependent RNA polymerase I (RNA Pol I), prepared by cryo-negative staining, was studied by electron microscopy. A structural model of the enzyme at a resolution of 1.8 nm was determined from the analysis of isolated molecules and showed an excellent fit with the atomic structure of the RNA Pol II Delta4/7. The high signal-to-noise ratio (SNR) of the stained molecular images revealed a conformational flexibility within the image data set that could be recovered in three-dimensions after implementation of a novel strategy to sort the "open" and "closed" conformations in our heterogeneous data set. This conformational change mapped in the "wall/flap" domain of the second largest subunit (beta-like) and allows a better accessibility of the DNA-binding groove. This displacement of the wall/flap domain could play an important role in the transition between initiation and elongation state of the enzyme. Moreover, a protrusion was apparent in the cryo-negatively stained model, which was absent in the atomic structure and was not detected in previous 3D models of RNA Pol I. This structure could, however, be detected in unstained views of the enzyme obtained from frozen hydrated 2D crystals, indicating that this novel feature is not induced by the staining process. Unexpectedly, negatively charged molybdenum compounds were found to accumulate within the DNA-binding groove, which is best explained by the highly positive electrostatic potential of this region of the molecule, thus, suggesting that the stain distribution reflects the overall surface charge of the molecule.
Resumo:
BACKGROUND: Biodegradable polymers for release of antiproliferative drugs from metallic drug-eluting stents aim to improve long-term vascular healing and efficacy. We designed a large scale clinical trial to compare a novel thin strut, cobalt-chromium drug-eluting stent with silicon carbide-coating releasing sirolimus from a biodegradable polymer (O-SES, Orsiro; Biotronik, Bülach, Switzerland) with the durable polymer-based Xience Prime/Xpedition everolimus-eluting stent (EES) (Xience Prime/Xpedition stent, Abbott Vascular, IL) in an all-comers patient population. DESIGN: The multicenter BIOSCIENCE trial (NCT01443104) randomly assigned 2,119 patients to treatment with biodegradable polymer sirolimus-eluting stents (SES) or durable polymer EES at 9 sites in Switzerland. Patients with chronic stable coronary artery disease or acute coronary syndromes, including non-ST-elevation and ST-elevation myocardial infarction, were eligible for the trial if they had at least 1 lesion with a diameter stenosis >50% appropriate for coronary stent implantation. The primary end point target lesion failure (TLF) is a composite of cardiac death, target vessel myocardial infarction, and clinically driven target lesion revascularization within 12 months. Assuming a TLF rate of 8% at 12 months in both treatment arms and accepting 3.5% as a margin for noninferiority, inclusion of 2,060 patients would provide more than 80% power to detect noninferiority of the biodegradable polymer SES compared with the durable polymer EES at a 1-sided type I error of 0.05. Clinical follow-up will be continued through 5 years. CONCLUSION: The BIOSCIENCE trial will determine whether the biodegradable polymer SES is noninferior to the durable polymer EES with respect to TLF.