71 resultados para molecular surface area features
em Université de Lausanne, Switzerland
Resumo:
Peripheral T-cell lymphoma, not otherwise specified is a heterogeneous group of aggressive neoplasms with indistinct borders. By gene expression profiling we previously reported unsupervised clusters of peripheral T-cell lymphomas, not otherwise specified correlating with CD30 expression. In this work we extended the analysis of peripheral T-cell lymphoma molecular profiles to prototypical CD30(+) peripheral T-cell lymphomas (anaplastic large cell lymphomas), and validated mRNA expression profiles at the protein level. Existing transcriptomic datasets from peripheral T-cell lymphomas, not otherwise specified and anaplastic large cell lymphomas were reanalyzed. Twenty-one markers were selected for immunohistochemical validation on 80 peripheral T-cell lymphoma samples (not otherwise specified, CD30(+) and CD30(-); anaplastic large cell lymphomas, ALK(+) and ALK(-)), and differences between subgroups were assessed. Clinical follow-up was recorded. Compared to CD30(-) tumors, CD30(+) peripheral T-cell lymphomas, not otherwise specified were significantly enriched in ALK(-) anaplastic large cell lymphoma-related genes. By immunohistochemistry, CD30(+) peripheral T-cell lymphomas, not otherwise specified differed significantly from CD30(-) samples [down-regulated expression of T-cell receptor-associated proximal tyrosine kinases (Lck, Fyn, Itk) and of proteins involved in T-cell differentiation/activation (CD69, ICOS, CD52, NFATc2); upregulation of JunB and MUM1], while overlapping with anaplastic large cell lymphomas. CD30(-) peripheral T-cell lymphomas, not otherwise specified tended to have an inferior clinical outcome compared to the CD30(+) subgroups. In conclusion, we show molecular and phenotypic features common to CD30(+) peripheral T-cell lymphomas, and significant differences between CD30(-) and CD30(+) peripheral T-cell lymphomas, not otherwise specified, suggesting that CD30 expression might delineate two biologically distinct subgroups.
Resumo:
Computed tomography (CT) is used increasingly to measure liver volume in patients undergoing evaluation for transplantation or resection. This study is designed to determine a formula predicting total liver volume (TLV) based on body surface area (BSA) or body weight in Western adults. TLV was measured in 292 patients from four Western centers. Liver volumes were calculated from helical computed tomographic scans obtained for conditions unrelated to the hepatobiliary system. BSA was calculated based on height and weight. Each center used a different established method of three-dimensional volume reconstruction. Using regression analysis, measurements were compared, and formulas correlating BSA or body weight to TLV were established. A linear regression formula to estimate TLV based on BSA was obtained: TLV = -794.41 + 1,267.28 x BSA (square meters; r(2) = 0.46; P <.0001). A formula based on patient weight also was derived: TLV = 191.80 + 18.51 x weight (kilograms; r(2) = 0.49; P <.0001). The newly derived TLV formula based on BSA was compared with previously reported formulas. The application of a formula obtained from healthy Japanese individuals underestimated TLV. Two formulas derived from autopsy data for Western populations were similar to the newly derived BSA formula, with a slight overestimation of TLV. In conclusion, hepatic three-dimensional volume reconstruction based on helical CT predicts TLV based on BSA or body weight. The new formulas derived from this correlation should contribute to the estimation of TLV before liver transplantation or major hepatic resection.
Resumo:
BACKGROUND: Limited data have been published on the normal size of the ascending aorta (AA) measured using transthoracic echocardiography (TTE). METHODS: AA diameters were measured in 1799 patients with normal cardiac findings on TTE and compared with the diameters of the sinus of Valsalva (SoV). RESULTS: Mean diameters in men and women, respectively, were 3.4 and 3.1 cm for the SoV and 3.2 and 3.0 cm for the AA. The sizes of the SoV and the AA showed strong correlations with age, age squared, and body surface area. The 5th and 95th percentile curves for the SoV and AA showed faster growth of diameters in early adulthood compared with old age. The dimensions of the SoV were larger than those of the AA (mean differences, 0.19 cm in men and 0.08 cm in women), and the difference between the SoV and AA was negatively correlated with age. CONCLUSION: The findings of this study stress the importance of indexing dimensions of the SoV and the AA to age and body surface area separately for men and women.
Resumo:
Purpose: Obesity is an established independent risk factor for chronic kidney disease. Thus, measurement of glomerular filtration rate (GFR) is important in this population. Traditionally, GFR has been indexed for body surface area (BSA), but this indexation may not be appropriate in obese individuals. Therefore, the objective of the study was to compare absolute GFR with GFR indexed for BSA and with GFR indexed for height. Methods and materials: The study was conducted in 66 families from the Seychelles islands that included several members with hypertension. GFR and effective renal plasma flow (ERPF) were measured using inulin and PAH clearances, respectively. Antihypertensive treatment, if used, was withheld 2 weeks before conducting the clearances. Participants with diabetes mellitus were excluded from the analysis. BSA was calculated using the Dubois formula. We assessed trend across BMI categories using a non parametric test. Results: Participants included 174 women and 127 men. The prevalence of hypertension was 61%, of which 68% were treated. The table shows that absolute GFR, GFR indexed for height, ERPF, filtration fraction were significantly higher across BMI categories. When GFR was indexed for BSA, the association between GFR and BMI categories was lost. Conclusion: Indexing GFR for BSA in overweight and obese individuals leads to a substantial underestimation of GFR. Filtration fraction, which does not depend on BSA, is higher in obese individuals, which suggests glomerular hyperfiltration. Indexing GFR for BSA therefore would mask the underlying glomerular hyperfiltration. As the number of nephrons does not increase with weight gain, absolute GFR represents a better marker of single nephron GFR and is more appropriate.
Resumo:
The mouse Grueneberg ganglion (GG) is an olfactory subsystem located at the tip of the nose close to the entry of the naris. It comprises neurons that are both sensitive to cold temperature and play an important role in the detection of alarm pheromones (APs). This chemical modality may be essential for species survival. Interestingly, GG neurons display an atypical mammalian olfactory morphology with neurons bearing deeply invaginated cilia mostly covered by ensheathing glial cells. We had previously noticed their morphological resemblance with the chemosensory amphid neurons found in the anterior region of the head of Caenorhabditis elegans (C. elegans). We demonstrate here further molecular and functional similarities. Thus, we found an orthologous expression of molecular signaling elements that was furthermore restricted to similar specific subcellular localizations. Calcium imaging also revealed a ligand selectivity for the methylated thiazole odorants that amphid neurons are known to detect. Cellular responses from GG neurons evoked by chemical or temperature stimuli were also partially cGMP-dependent. In addition, we found that, although behaviors depending on temperature sensing in the mouse, such as huddling and thermotaxis did not implicate the GG, the thermosensitivity modulated the chemosensitivity at the level of single GG neurons. Thus, the striking similarities with the chemosensory amphid neurons of C. elegans conferred to the mouse GG neurons unique multimodal sensory properties.
Resumo:
The rationale of this study was to investigate molecular flexibility and its influence on physicochemical properties with a view to uncovering additional information on the fuzzy concept of dynamic molecular structure. Indeed, it is now known that computed molecular interaction fields (MIFs) such as molecular electrostatic potentials (MEPs) and lipophilicity potentials (MLPs) are conformation-dependent, as are dipole moments. A database of 125 compounds was used whose conformational space was explored, while conformation-dependent parameters were computed for each non-redundant conformer found in the conformational space of the compounds. These parameters were the virtual log P (log P(MLP), calculated by a MLP approach), the apolar surface area (ASA), polar surface area (PSA), and solvent-accessible surface (SAS). For each compound, the range taken by each parameter (its property space) was divided by the number of rotors taken as an index of flexibility, yielding a parameter termed 'molecular sensitivity'. This parameter was poorly correlated with others (i.e., it contains novel information) and showed the compounds to fall into two broad classes. 'Sensitive' molecules are those whose computed property ranges are markedly sensitive to conformational effects, whereas 'insensitive' (in fact, less sensitive) molecules have property ranges which are comparatively less affected by conformational fluctuations. A pharmacokinetic application is presented.
Resumo:
Recognition by the T-cell receptor (TCR) of immunogenic peptides (p) presented by Class I major histocompatibility complexes (MHC) is the key event in the immune response against virus-infected cells or tumor cells. A study of the 2C TCR/SIYR/H-2K(b) system using a computational alanine scanning and a much faster binding free energy decomposition based on the Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) method is presented. The results show that the TCR-p-MHC binding free energy decomposition using this approach and including entropic terms provides a detailed and reliable description of the interactions between the molecules at an atomistic level. Comparison of the decomposition results with experimentally determined activity differences for alanine mutants yields a correlation of 0.67 when the entropy is neglected and 0.72 when the entropy is taken into account. Similarly, comparison of experimental activities with variations in binding free energies determined by computational alanine scanning yields correlations of 0.72 and 0.74 when the entropy is neglected or taken into account, respectively. Some key interactions for the TCR-p-MHC binding are analyzed and some possible side chains replacements are proposed in the context of TCR protein engineering. In addition, a comparison of the two theoretical approaches for estimating the role of each side chain in the complexation is given, and a new ad hoc approach to decompose the vibrational entropy term into atomic contributions, the linear decomposition of the vibrational entropy (LDVE), is introduced. The latter allows the rapid calculation of the entropic contribution of interesting side chains to the binding. This new method is based on the idea that the most important contributions to the vibrational entropy of a molecule originate from residues that contribute most to the vibrational amplitude of the normal modes. The LDVE approach is shown to provide results very similar to those of the exact but highly computationally demanding method.
Resumo:
Exposure to PM10 and PM2.5 (particulate matter with aerodynamic diameter smaller than 10 μm and 2.5 μm, respectively) is associated with a range of adverse health effects, including cancer, pulmonary and cardiovascular diseases. Surface characteristics (chemical reactivity, surface area) are considered of prime importance to understand the mechanisms which lead to harmful effects. A hypothetical mechanism to explain these adverse effects is the ability of components (organics, metal ions) adsorbed on these particles to generate Reactive Oxygen Species (ROS), and thereby to cause oxidative stress in biological systems (Donaldson et al., 2003). ROS can attack almost any cellular structure, like DNA or cellular membrane, leading to the formation of a wide variety of degradation products which can be used as a biomarker of oxidative stress. The aim of the present research project is to test whether there is a correlation between the exposure to Diesel Exhaust Particulate (DEP) and the oxidative stress status. For that purpose, a survey has been conducted in real occupational situations where workers were exposed to DEP (bus depots). Different exposure variables have been considered: - particulate number, size distribution and surface area (SMPS); - particulate mass - PM2.5 and PM4 (gravimetry); - elemental and organic carbon (coulometry); - total adsorbed heavy metals - iron, copper, manganese (atomic adsorption); - surface functional groups present on aerosols (Knudsen flow reactor). (Demirdjian et al., 2005). Several biomarkers of oxidative stress (8-hydroxy-2'-deoxyguanosine and several aldehydes) have been determined either in urine or serum of volunteers. Results obtained during the sampling campaign in several bus depots indicated that the occupational exposure to particulates in these places was rather low (40-50 μg/m3 for PM4). Size distributions indicated that particles are within the nanometric range. Surface characteristics of sampled particles varied strongly, depending on the bus depot. They were usually characterized by high carbonyl and low acidic sites content. Among the different biomarkers which have been analyzed within the framework of this study, mean levels of 8- hydroxy-2'-deoxyguanosine and several aldehydes (hexanal, heptanal, octanal, nonanal) increased during two consecutive days of exposure for non-smokers. In order to bring some insight into the relation between the particulate characteristics and the formation of ROS by-products, biomarkers levels will be discussed in relation with exposure variables.
Resumo:
Repeated passaging in conventional cell culture reduces pluripotency and proliferation capacity of human mesenchymal stem cells (MSC). We introduce an innovative cell culture method whereby the culture surface is dynamically enlarged during cell proliferation. This approach maintains constantly high cell density while preventing contact inhibition of growth. A highly elastic culture surface was enlarged in steps of 5% over the course of a 20-day culture period to 800% of the initial surface area. Nine weeks of dynamic expansion culture produced 10-fold more MSC compared with conventional culture, with one-third the number of trypsin passages. After 9 weeks, MSC continued to proliferate under dynamic expansion but ceased to grow in conventional culture. Dynamic expansion culture fully retained the multipotent character of MSC, which could be induced to differentiate into adipogenic, chondrogenic, osteogenic, and myogenic lineages. Development of an undesired fibrogenic myofibroblast phenotype was suppressed. Hence, our novel method can rapidly provide the high number of autologous, multipotent, and nonfibrogenic MSC needed for successful regenerative medicine.
Resumo:
Single amino acid substitution is the type of protein alteration most related to human diseases. Current studies seek primarily to distinguish neutral mutations from harmful ones. Very few methods offer an explanation of the final prediction result in terms of the probable structural or functional effect on the protein. In this study, we describe the use of three novel parameters to identify experimentally-verified critical residues of the TP53 protein (p53). The first two parameters make use of a surface clustering method to calculate the protein surface area of highly conserved regions or regions with high nonlocal atomic interaction energy (ANOLEA) score. These parameters help identify important functional regions on the surface of a protein. The last parameter involves the use of a new method for pseudobinding free-energy estimation to specifically probe the importance of residue side-chains to the stability of protein fold. A decision tree was designed to optimally combine these three parameters. The result was compared to the functional data stored in the International Agency for Research on Cancer (IARC) TP53 mutation database. The final prediction achieved a prediction accuracy of 70% and a Matthews correlation coefficient of 0.45. It also showed a high specificity of 91.8%. Mutations in the 85 correctly identified important residues represented 81.7% of the total mutations recorded in the database. In addition, the method was able to correctly assign a probable functional or structural role to the residues. Such information could be critical for the interpretation and prediction of the effect of missense mutations, as it not only provided the fundamental explanation of the observed effect, but also helped design the most appropriate laboratory experiment to verify the prediction results.
Resumo:
OBJECTIVES: This study aimed at measuring the lipophilicity and ionization constants of diastereoisomeric dipeptides, interpreting them in terms of conformational behavior, and developing statistical models to predict them. METHODS: A series of 20 dipeptides of general structure NH(2) -L-X-(L or D)-His-OMe was designed and synthetized. Their experimental ionization constants (pK(1) , pK(2) and pK(3) ) and lipophilicity parameters (log P(N) and log D(7.4) ) were measured by potentiometry. Molecular modeling in three media (vacuum, water, and chloroform) was used to explore and sample their conformational space, and for each stored conformer to calculate their radius of gyration, virtual log P (preferably written as log P(MLP) , meaning obtained by the molecular lipophilicity potential (MLP) method) and polar surface area (PSA). Means and ranges were calculated for these properties, as was their sensitivity (i.e., the ratio between property range and number of rotatable bonds). RESULTS: Marked differences between diastereoisomers were seen in their experimental ionization constants and lipophilicity parameters. These differences are explained by molecular flexibility, configuration-dependent differences in intramolecular interactions, and accessibility of functional groups. Multiple linear equations correlated experimental lipophilicity parameters and ionization constants with PSA range and other calculated parameters. CONCLUSION: This study documents the differences in lipophilicity and ionization constants between diastereoisomeric dipeptides. Such configuration-dependent differences are shown to depend markedly on differences in conformational behavior and to be amenable to multiple linear regression. Chirality 24:566-576, 2012. © 2012 Wiley Periodicals, Inc.
Resumo:
Exposure to PM10 and PM2.5 (particulate matter with aerodynamic diameter smaller than 10 μm and 2.5 μm, respectively) is associated with a range of adverse health effects, including cancer, pulmonary and cardiovascular diseases. Surface characteristics (chemical reactivity, surface area) are considered of prime importance to understand the mechanisms which lead to harmful effects. A hypothetical mechanism to explain these adverse effects is the ability of components (organics, metal ions) adsorbed on these particles to generate Reactive Oxygen Species (ROS), and thereby to cause oxidative stress in biological systems (Donaldson et al., 2003). ROS can attack almost any cellular structure, like DNA or cellular membrane, leading to the formation of a wide variety of degradation products which can be used as a biomarker of oxidative stress. The aim of the present research project is to test whether there is a correlation between the exposure to Diesel Exhaust Particulate (DEP) and the oxidative stress status. For that purpose, a survey has been conducted in real occupational situations where workers were exposed to DEP (bus depots). Different exposure variables have been considered: - particulate number, size distribution and surface area (SMPS); - particulate mass - PM2.5 and PM4 (gravimetry); - elemental and organic carbon (coulometry); - total adsorbed heavy metals - iron, copper, manganese (atomic adsorption); - surface functional groups present on aerosols (Knudsen flow reactor). Several biomarkers of oxidative stress (8-hydroxy-2'-deoxyguanosine and several aldehydes) have been determined either in urine or serum of volunteers. Results obtained during the sampling campaign in several bus depots indicated that the occupational exposure to particulates in these places was rather low (40-50 μg/m3 for PM4). Bimodal size distributions were generally observed (5 μm and <1 μm). Surface characteristics of PM4 varied strongly, depending on the bus depot. They were usually characterized by high carbonyl and low acidic sites content. Among the different biomarkers which have been analyzed within the framework of this study, mean urinary levels of 8-hydroxy-2'-deoxyguanosine increased significantly (p<0.05) during two consecutive days of exposure for non-smoker workers. On the other hand, no statistically significant differences were observed for serum levels of hexanal, nonanal and 4- hydroxy-nonenal (p>0.05). Biomarkers levels will be compared to exposure variables to gain a better understanding of the relation between the particulate characteristics and the formation of ROS by-products. This project is financed by the Swiss State Secretariat for Education and Research. It is conducted within the framework of the COST Action 633 "Particulate Matter - Properties Related to Health Effects".
Resumo:
Malgré son importance dans notre vie de tous les jours, certaines propriétés de l?eau restent inexpliquées. L'étude des interactions entre l'eau et les particules organiques occupe des groupes de recherche dans le monde entier et est loin d'être finie. Dans mon travail j'ai essayé de comprendre, au niveau moléculaire, ces interactions importantes pour la vie. J'ai utilisé pour cela un modèle simple de l'eau pour décrire des solutions aqueuses de différentes particules. Récemment, l?eau liquide a été décrite comme une structure formée d?un réseau aléatoire de liaisons hydrogènes. En introduisant une particule hydrophobe dans cette structure à basse température, certaines liaisons hydrogènes sont détruites ce qui est énergétiquement défavorable. Les molécules d?eau s?arrangent alors autour de cette particule en formant une cage qui permet de récupérer des liaisons hydrogènes (entre molécules d?eau) encore plus fortes : les particules sont alors solubles dans l?eau. A des températures plus élevées, l?agitation thermique des molécules devient importante et brise les liaisons hydrogènes. Maintenant, la dissolution des particules devient énergétiquement défavorable, et les particules se séparent de l?eau en formant des agrégats qui minimisent leur surface exposée à l?eau. Pourtant, à très haute température, les effets entropiques deviennent tellement forts que les particules se mélangent de nouveau avec les molécules d?eau. En utilisant un modèle basé sur ces changements de structure formée par des liaisons hydrogènes j?ai pu reproduire les phénomènes principaux liés à l?hydrophobicité. J?ai trouvé une région de coexistence de deux phases entre les températures critiques inférieure et supérieure de solubilité, dans laquelle les particules hydrophobes s?agrègent. En dehors de cette région, les particules sont dissoutes dans l?eau. J?ai démontré que l?interaction hydrophobe est décrite par un modèle qui prend uniquement en compte les changements de structure de l?eau liquide en présence d?une particule hydrophobe, plutôt que les interactions directes entre les particules. Encouragée par ces résultats prometteurs, j?ai étudié des solutions aqueuses de particules hydrophobes en présence de co-solvants cosmotropiques et chaotropiques. Ce sont des substances qui stabilisent ou déstabilisent les agrégats de particules hydrophobes. La présence de ces substances peut être incluse dans le modèle en décrivant leur effet sur la structure de l?eau. J?ai pu reproduire la concentration élevée de co-solvants chaotropiques dans le voisinage immédiat de la particule, et l?effet inverse dans le cas de co-solvants cosmotropiques. Ce changement de concentration du co-solvant à proximité de particules hydrophobes est la cause principale de son effet sur la solubilité des particules hydrophobes. J?ai démontré que le modèle adapté prédit correctement les effets implicites des co-solvants sur les interactions de plusieurs corps entre les particules hydrophobes. En outre, j?ai étendu le modèle à la description de particules amphiphiles comme des lipides. J?ai trouvé la formation de différents types de micelles en fonction de la distribution des regions hydrophobes à la surface des particules. L?hydrophobicité reste également un sujet controversé en science des protéines. J?ai défini une nouvelle échelle d?hydrophobicité pour les acides aminés qui forment des protéines, basée sur leurs surfaces exposées à l?eau dans des protéines natives. Cette échelle permet une comparaison meilleure entre les expériences et les résultats théoriques. Ainsi, le modèle développé dans mon travail contribue à mieux comprendre les solutions aqueuses de particules hydrophobes. Je pense que les résultats analytiques et numériques obtenus éclaircissent en partie les processus physiques qui sont à la base de l?interaction hydrophobe.<br/><br/>Despite the importance of water in our daily lives, some of its properties remain unexplained. Indeed, the interactions of water with organic particles are investigated in research groups all over the world, but controversy still surrounds many aspects of their description. In my work I have tried to understand these interactions on a molecular level using both analytical and numerical methods. Recent investigations describe liquid water as random network formed by hydrogen bonds. The insertion of a hydrophobic particle at low temperature breaks some of the hydrogen bonds, which is energetically unfavorable. The water molecules, however, rearrange in a cage-like structure around the solute particle. Even stronger hydrogen bonds are formed between water molecules, and thus the solute particles are soluble. At higher temperatures, this strict ordering is disrupted by thermal movements, and the solution of particles becomes unfavorable. They minimize their exposed surface to water by aggregating. At even higher temperatures, entropy effects become dominant and water and solute particles mix again. Using a model based on these changes in water structure I have reproduced the essential phenomena connected to hydrophobicity. These include an upper and a lower critical solution temperature, which define temperature and density ranges in which aggregation occurs. Outside of this region the solute particles are soluble in water. Because I was able to demonstrate that the simple mixture model contains implicitly many-body interactions between the solute molecules, I feel that the study contributes to an important advance in the qualitative understanding of the hydrophobic effect. I have also studied the aggregation of hydrophobic particles in aqueous solutions in the presence of cosolvents. Here I have demonstrated that the important features of the destabilizing effect of chaotropic cosolvents on hydrophobic aggregates may be described within the same two-state model, with adaptations to focus on the ability of such substances to alter the structure of water. The relevant phenomena include a significant enhancement of the solubility of non-polar solute particles and preferential binding of chaotropic substances to solute molecules. In a similar fashion, I have analyzed the stabilizing effect of kosmotropic cosolvents in these solutions. Including the ability of kosmotropic substances to enhance the structure of liquid water, leads to reduced solubility, larger aggregation regime and the preferential exclusion of the cosolvent from the hydration shell of hydrophobic solute particles. I have further adapted the MLG model to include the solvation of amphiphilic solute particles in water, by allowing different distributions of hydrophobic regions at the molecular surface, I have found aggregation of the amphiphiles, and formation of various types of micelle as a function of the hydrophobicity pattern. I have demonstrated that certain features of micelle formation may be reproduced by the adapted model to describe alterations of water structure near different surface regions of the dissolved amphiphiles. Hydrophobicity remains a controversial quantity also in protein science. Based on the surface exposure of the 20 amino-acids in native proteins I have defined the a new hydrophobicity scale, which may lead to an improvement in the comparison of experimental data with the results from theoretical HP models. Overall, I have shown that the primary features of the hydrophobic interaction in aqueous solutions may be captured within a model which focuses on alterations in water structure around non-polar solute particles. The results obtained within this model may illuminate the processes underlying the hydrophobic interaction.<br/><br/>La vie sur notre planète a commencé dans l'eau et ne pourrait pas exister en son absence : les cellules des animaux et des plantes contiennent jusqu'à 95% d'eau. Malgré son importance dans notre vie de tous les jours, certaines propriétés de l?eau restent inexpliquées. En particulier, l'étude des interactions entre l'eau et les particules organiques occupe des groupes de recherche dans le monde entier et est loin d'être finie. Dans mon travail j'ai essayé de comprendre, au niveau moléculaire, ces interactions importantes pour la vie. J'ai utilisé pour cela un modèle simple de l'eau pour décrire des solutions aqueuses de différentes particules. Bien que l?eau soit généralement un bon solvant, un grand groupe de molécules, appelées molécules hydrophobes (du grecque "hydro"="eau" et "phobia"="peur"), n'est pas facilement soluble dans l'eau. Ces particules hydrophobes essayent d'éviter le contact avec l'eau, et forment donc un agrégat pour minimiser leur surface exposée à l'eau. Cette force entre les particules est appelée interaction hydrophobe, et les mécanismes physiques qui conduisent à ces interactions ne sont pas bien compris à l'heure actuelle. Dans mon étude j'ai décrit l'effet des particules hydrophobes sur l'eau liquide. L'objectif était d'éclaircir le mécanisme de l'interaction hydrophobe qui est fondamentale pour la formation des membranes et le fonctionnement des processus biologiques dans notre corps. Récemment, l'eau liquide a été décrite comme un réseau aléatoire formé par des liaisons hydrogènes. En introduisant une particule hydrophobe dans cette structure, certaines liaisons hydrogènes sont détruites tandis que les molécules d'eau s'arrangent autour de cette particule en formant une cage qui permet de récupérer des liaisons hydrogènes (entre molécules d?eau) encore plus fortes : les particules sont alors solubles dans l'eau. A des températures plus élevées, l?agitation thermique des molécules devient importante et brise la structure de cage autour des particules hydrophobes. Maintenant, la dissolution des particules devient défavorable, et les particules se séparent de l'eau en formant deux phases. A très haute température, les mouvements thermiques dans le système deviennent tellement forts que les particules se mélangent de nouveau avec les molécules d'eau. A l'aide d'un modèle qui décrit le système en termes de restructuration dans l'eau liquide, j'ai réussi à reproduire les phénomènes physiques liés à l?hydrophobicité. J'ai démontré que les interactions hydrophobes entre plusieurs particules peuvent être exprimées dans un modèle qui prend uniquement en compte les liaisons hydrogènes entre les molécules d'eau. Encouragée par ces résultats prometteurs, j'ai inclus dans mon modèle des substances fréquemment utilisées pour stabiliser ou déstabiliser des solutions aqueuses de particules hydrophobes. J'ai réussi à reproduire les effets dûs à la présence de ces substances. De plus, j'ai pu décrire la formation de micelles par des particules amphiphiles comme des lipides dont la surface est partiellement hydrophobe et partiellement hydrophile ("hydro-phile"="aime l'eau"), ainsi que le repliement des protéines dû à l'hydrophobicité, qui garantit le fonctionnement correct des processus biologiques de notre corps. Dans mes études futures je poursuivrai l'étude des solutions aqueuses de différentes particules en utilisant les techniques acquises pendant mon travail de thèse, et en essayant de comprendre les propriétés physiques du liquide le plus important pour notre vie : l'eau.
Resumo:
KNOTS are usually categorized in terms of topological properties that are invariant under changes in a knot's spatial configuration(1-4). Here we approach knot identification from a different angle, by considering the properties of particular geometrical forms which we define as 'ideal'. For a knot with a given topology and assembled from a tube of uniform diameter, the ideal form is the geometrical configuration having the highest ratio of volume to surface area. Practically, this is equivalent to determining the shortest piece of tube that can be closed to form the knot. Because the notion of an ideal form is independent of absolute spatial scale, the length-to-diameter ratio of a tube providing an ideal representation is constant, irrespective of the tube's actual dimensions. We report the results of computer simulations which show that these ideal representations of knots have surprisingly simple geometrical properties. In particular, there is a simple linear relationship between the length-to-diameter ratio and the crossing number-the number of intersections in a two-dimensional projection of the knot averaged over all directions. We have also found that the average shape of knotted polymeric chains in thermal equilibrium is closely related to the ideal representation of the corresponding knot type. Our observations provide a link between ideal geometrical objects and the behaviour of seemingly disordered systems, and allow the prediction of properties of knotted polymers such as their electrophoretic mobility(5).
Resumo:
We have previously shown that neuroblasts from cerebral hemispheres of 6-day-old chick embryos are able to proliferate when grown in the presence of fetal calf serum. We report here that in the presence of horse serum alone the proliferative rate of neuroblasts is strongly reduced. A high proliferative rate is restored upon the addition of bovine transferrin and to a lesser extent with added FeSO4 or hemin. These findings suggest that the transferrin of horse serum cannot be used by chick neuroblasts in vitro, while bovine transferrin exogenously added is active in promoting cell proliferation. We propose that the stimulatory activity of the fetal calf serum is due to bovine transferrin, since when this serum is fractionated by gel filtration, the fractions that stimulate the proliferation of neuroblasts grown in the presence of horse serum are located in the molecular weight area of transferrin, and they do contain transferrin as seen by immunoblotting with a specific anti-transferrin antibody.