5 resultados para metabolism and cognition
em Université de Lausanne, Switzerland
Resumo:
OBJECTIVE: Lipids stored in adipose tissue can originate from dietary lipids or from de novo lipogenesis (DNL) from carbohydrates. Whether DNL is abnormal in adipose tissue of overweight individuals remains unknown. The present study was undertaken to assess the effect of carbohydrate overfeeding on glucose-induced whole body DNL and adipose tissue lipogenic gene expression in lean and overweight humans. DESIGN: Prospective, cross-over study. SUBJECTS AND METHODS: A total of 11 lean (five male, six female, mean BMI 21.0+/-0.5 kg/m(2)) and eight overweight (four males, four females, mean BMI 30.1+/-0.6 kg/m(2)) volunteers were studied on two occasions. On one occasion, they received an isoenergetic diet containing 50% carbohydrate for 4 days prior to testing; on the other, they received a hyperenergetic diet (175% energy requirements) containing 71% carbohydrates. After each period of 4 days of controlled diet, they were studied over 6 h after having received 3.25 g glucose/kg fat free mass. Whole body glucose oxidation and net DNL were monitored by means of indirect calorimetry. An adipose tissue biopsy was obtained at the end of this 6-h period and the levels of SREBP-1c, acetyl CoA carboxylase, and fatty acid synthase mRNA were measured by real-time PCR. RESULTS: After isocaloric feeding, whole body net DNL amounted to 35+/-9 mg/kg fat free mass/5 h in lean subjects and to 49+/-3 mg/kg fat free mass/5 h in overweight subjects over the 5 h following glucose ingestion. These figures increased (P<0.001) to 156+/-21 mg/kg fat free mass/5 h in lean and 64+/-11 mg/kg fat free mass/5 h (P<0.05 vs lean) in overweight subjects after carbohydrate overfeeding. Whole body DNL after overfeeding was lower (P<0.001) and glycogen synthesis was higher (P<0.001) in overweight than in normal subjects. Adipose tissue SREBP-1c mRNA increased by 25% in overweight and by 43% in lean subjects (P<0.05) after carbohydrate overfeeding, whereas fatty acid synthase mRNA increased by 66 and 84% (P<0.05). CONCLUSION: Whole body net DNL is not increased during carbohydrate overfeeding in overweight individuals. Stimulation of adipose lipogenic enzymes is also not higher in overweight subjects. Carbohydrate overfeeding does not stimulate whole body net DNL nor expression of lipogenic enzymes in adipose tissue to a larger extent in overweight than lean subjects.
Resumo:
Cardiovascular diseases and in particular heart failure are major causes of morbidity and mortality in the Western world. Recently, the notion of promoting cardiac regeneration as a means to replace lost cardiomyocytes in the damaged heart has engendered considerable research interest. These studies envisage the utilization of both endogenous and exogenous cellular populations, which undergo highly specialized cell fate transitions to promote cardiomyocyte replenishment. Such transitions are under the control of regenerative gene regulatory networks, which are enacted by the integrated execution of specific transcriptional programs. In this context, it is emerging that the non-coding portion of the genome is dynamically transcribed generating thousands of regulatory small and long non-coding RNAs, which are central orchestrators of these networks. In this review, we discuss more particularly the biological roles of two classes of regulatory non-coding RNAs, i.e. microRNAs and long non-coding RNAs, with a particular emphasis on their known and putative roles in cardiac homeostasis and regeneration. Indeed, manipulating non-coding RNA-mediated regulatory networks could provide keys to unlock the dormant potential of the mammalian heart to regenerate. This should ultimately improve the effectiveness of current regenerative strategies and discover new avenues for repair. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Resumo:
The association between adiposity measures and dyslipidemia has seldom been assessed in a multipopulational setting. 27 populations from Europe, Australia, New Zealand and Canada (WHO MONICA project) using health surveys conducted between 1990 and 1997 in adults aged 35-64 years (n = 40,480). Dyslipidemia was defined as the total/HDL cholesterol ratio >6 (men) and >5 (women). Overall prevalence of dyslipidemia was 25% in men and 23% in women. Logistic regression showed that dyslipidemia was strongly associated with body mass index (BMI) in men and with waist circumference (WC) in women, after adjusting for region, age and smoking. Among normal-weight men and women (BMI<25 kg/m(2)), an increase in the odds for being dyslipidemic was observed between lowest and highest WC quartiles (OR = 3.6, p < 0.001). Among obese men (BMI ≥ 30), the corresponding increase was smaller (OR = 1.2, p = 0.036). A similar weakening was observed among women. Classification tree analysis was performed to assign subjects into classes of risk for dyslipidemia. BMI thresholds (25.4 and 29.2 kg/m(2)) in men and WC thresholds (81.7 and 92.6 cm) in women came out at first stages. High WC (>84.8 cm) in normal-weight men, menopause in women and regular smoking further defined subgroups at increased risk. standard categories of BMI and WC, or their combinations, do not lead to optimal risk stratification for dyslipidemia in middle-age adults. Sex-specific adaptations are necessary, in particular by taking into account abdominal obesity in normal-weight men, post-menopausal age in women and regular smoking in both sexes.
Resumo:
OBJECTIVE: Genetic studies might provide new insights into the biological mechanisms underlying lipid metabolism and risk of CAD. We therefore conducted a genome-wide association study to identify novel genetic determinants of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides. METHODS AND RESULTS: We combined genome-wide association data from 8 studies, comprising up to 17 723 participants with information on circulating lipid concentrations. We did independent replication studies in up to 37 774 participants from 8 populations and also in a population of Indian Asian descent. We also assessed the association between single-nucleotide polymorphisms (SNPs) at lipid loci and risk of CAD in up to 9 633 cases and 38 684 controls. We identified 4 novel genetic loci that showed reproducible associations with lipids (probability values, 1.6×10(-8) to 3.1×10(-10)). These include a potentially functional SNP in the SLC39A8 gene for HDL-C, an SNP near the MYLIP/GMPR and PPP1R3B genes for LDL-C, and at the AFF1 gene for triglycerides. SNPs showing strong statistical association with 1 or more lipid traits at the CELSR2, APOB, APOE-C1-C4-C2 cluster, LPL, ZNF259-APOA5-A4-C3-A1 cluster and TRIB1 loci were also associated with CAD risk (probability values, 1.1×10(-3) to 1.2×10(-9)). CONCLUSIONS: We have identified 4 novel loci associated with circulating lipids. We also show that in addition to those that are largely associated with LDL-C, genetic loci mainly associated with circulating triglycerides and HDL-C are also associated with risk of CAD. These findings potentially provide new insights into the biological mechanisms underlying lipid metabolism and CAD risk.
Resumo:
The prevalence of type 2 diabetes mellitus and of the metabolic syndrome is rising worldwide and reaching epidemic proportions. These pathologies are associated with significant morbidity and mortality, in particular with an excess of cardiovascular deaths. Type 2 diabetes mellitus and the cluster of pathologies including insulin resistance, central obesity, high blood pressure, and hypertriglyceridemia that constitute the metabolic syndrome are associated with low levels of HDL cholesterol and the presence of dysfunctional HDLs. We here review the epidemiological evidence and the potential underlying mechanisms of this association. We first discuss the well-established association of type 2 diabetes mellitus and insulin resistance with alterations of lipid metabolism and how these alterations may lead to low levels of HDL cholesterol and the occurrence of dysfunctional HDLs. We then present and discuss the evidence showing that HDL modulates insulin sensitivity, insulin-independent glucose uptake, insulin secretion, and beta cell survival. A dysfunction in these actions could play a direct role in the pathogenesis of type 2 diabetes mellitus.