4 resultados para mesopredator release
em Université de Lausanne, Switzerland
Resumo:
Current in vitro fertilisation (IVF) practice requires synchronisation between the¦environment of cultured oocytes and embryos and the surroundings to what they would have¦been exposed to in vivo. Commercial, sequential media follow this requirement but their exact¦composition is not available. We have compared two widely used IVF culture media systems using¦the two choriocarcinoma cell lines JEG-3 and BeWo. The two hormones hCG and progesterone¦were determined in the culture supernatants as endpoints. In both cell lines, but in a more¦pronounced way in JEG-3, progesterone rather than hCG production was stimulated, and a¦higher hormone release was observed in the fertilisation than in the cleavage media. Differences¦between manufacturers were small and did not favour one system over the other. We conclude¦that both sequential media systems can be equally well used in current IVF laboratory practice.¦© 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
It was found recently that locomotor and rewarding effects of psychostimulants and opiates were dramatically decreased or suppressed in mice lacking alpha1b-adrenergic receptors [alpha1b-adrenergic receptor knock-outs (alpha1bAR-KOs)] (Drouin et al., 2002). Here we show that blunted locomotor responses induced by 3 and 6 mg/kg d-amphetamine in alpha1bAR-KO mice [-84 and -74%, respectively, when compared with wild-type (WT) mice] are correlated with an absence of d-amphetamine-induced increase in extracellular dopamine (DA) levels in the nucleus accumbens of alpha1bAR-KO mice. Moreover, basal extracellular DA levels in the nucleus accumbens are lower in alpha1bAR-KO than in WT littermates (-28%; p < 0.001). In rats however, prazosin, an alpha1-adrenergic antagonist, decreases d-amphetamine-induced locomotor hyperactivity without affecting extracellular DA levels in the nucleus accumbens, a finding related to the presence of an important nonfunctional release of DA (Darracq et al., 1998). We show here that local d-amphetamine releases nonfunctional DA with the same affinity but a more than threefold lower amplitude in C57BL6/J mice than in Sprague Dawley rats. Altogether, this suggests that a trans-synaptic mechanism amplifies functional DA into nonfunctional DA release. Our data confirm the presence of a powerful coupling between noradrenergic and dopaminergic neurons through the stimulation of alpha1b-adrenergic receptors and indicate that nonfunctional DA release is critical in the interpretation of changes in extracellular DA levels. These results suggest that alpha1b-adrenergic receptors may be important therapeutic pharmacological targets not only in addiction but also in psychosis because most neuroleptics possess anti-alpha1-adrenergic properties.
In vivo and in vitro effects of somatostatin and insulin on glucagon release in a human glucagonoma.
Resumo:
Inhibition of pancreatic glucagon secretion has been reported to be mediated by glucose, insulin and somatostatin. As no human pancreatic alpha-cell lines are available to study in vitro the relative importance of insulin and glucose in the control of pancreatic glucagon release, we investigated a patient presenting with a malignant glucagonoma who underwent surgical resection of the tumour. Functional somatostatin receptors were present as octreotide administration decreased basal glucagon and insulin secretion by 52 and 74%, respectively. The removed tumour was immunohistochemically positive for glucagon, chromogranin A and pancreatic polypeptide but negative for insulin, gastrin and somatostatin. The glucagonoma cells were also isolated and cultured in vitro. Incubation experiments revealed that change from high (10 mM) to low (1 mM) glucose concentration was unable to stimulate glucagon secretion. A dose-dependent inhibition of glucagon release by insulin was however, observed at low glucose concentration. These findings demonstrate that insulin could inhibit glucagon secretion in vitro in the absence of elevated glucose concentrations. These data suggest, as observed in vivo and in vitro in several animal studies, that glucopenia-induced glucagon secretion in humans is not mediated by a direct effect of low glucose on alpha-cells but possibly by a reduction of insulin-mediated alpha-cell suppression and/or an indirect neuronal stimulation of glucagon release.
Resumo:
Adjuvants enhance immunogenicity of vaccines through either targeted antigen delivery or stimulation of immune receptors. Three cationic nanoparticle formulations were evaluated for their potential as carriers for a DNA vaccine, and muramyl dipeptide (MDP) as immunostimulatory agent, to induce and increase immunogenicity of Mycobacterium tuberculosis antigen encoding plasmid DNA (pDNA). The formulations included (1) trimethyl chitosan (TMC) nanoparticles, (2) a squalene-in-water nanoemulsion, and (3) a mineral oil-in-water nanoemulsion. The adjuvant effect of the pDNA-nanocomplexes was evaluated by serum antibody analysis in immunized mice. All three carriers display a strong adjuvant effect, however, only TMC nanoparticles were capable to bias immune responses towards Th1. pDNA naturally contains immunostimulatory unmethylated CpG motifs that are recognized by Toll-like receptor 9 (TLR-9). In mechanistic in vitro studies, activation of TLR-9 and the ability to enhance immunogenicity by simultaneously targeting TLR-9 and NOD-like receptor 2 (NLR-2) was determined by proinflammatory cytokine release in RAW264.7 macrophages. pDNA in combination with MDP was shown to significantly increase proinflammatory cytokine release in a synergistic manner, dependent on NLR-2 activation. In summary, novel pDNA-Ag85A loaded nanoparticle formulations, which induce antigen specific immune responses in mice were developed, taking advantage of the synergistic combinations of TLR and NLR agonists to increase the adjuvanticity of the carriers used.