108 resultados para matrix metalloproteinase 16

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two well-described osteolysis syndromes associated with matrix metalloproteinase-2 deficiency and mutations in the metalloproteinase-2 gene are Torg-Winchester syndrome and nodulosis-arthropathy-osteolysis variant. They are characterized by carpal-tarsal destruction, subcutaneous nodules, and generalized osteoporosis and show autosomal recessive inheritance. Herein, we report two siblings affected with a novel mutation in matrix metalloproteinase 2 gene and discuss their clinical and radiographic findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple lines of evidence show that matrix metalloproteinases (MMPs) are involved in the peripheral neural system degenerative and regenerative processes. MMP-9 was suggested in particular to play a role in the peripheral nerve after injury or during Wallerian degeneration. Interestingly, our previous analysis of Lpin1 mutant mice (which present morphological signs of active demyelination and acute inflammatory cell migration, similar to processes present in the PNS undergoing Wallerian degeneration) revealed an accumulation of MMP-9 in the endoneurium of affected animals. We therefore generated a mouse line lacking both the Lpin1 and the MMP-9 genes in order to determine if MMP-9 plays a role in either inhibition or potentiation of the demyelinating phenotype present in Lpin1 knockout mice. The inactivation of MMP-9 alone did not lead to defects in PNS structure or function. Interestingly we observed that the double mutant animals showed reduced nerve conduction velocity, lower myelin protein mRNA expressions, and had more histological abnormalities as compared to the Lpin1 single mutants. In addition, based on immunohistochemical analysis and macrophage markers mRNA expression, we found a lower macrophage content in the sciatic nerve of the double mutant animals. Together our data indicate that MMP-9 plays a role in macrophage recruitment during postinjury PNS regeneration processes and suggest that slower macrophage infiltration delays regenerative processes in PNS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shedding of intercellular adhesion molecule 1 (ICAM-1) is believed to play a role in tumor cell resistance to cell-mediated cytotoxicity. However, the mechanism whereby ICAM-1 is shed from the surface of tumor cells remains unclear. In this study, we have addressed the possibility that matrix metalloproteinases are implicated in ICAM-1 shedding. Our observations suggest a functional relationship between ICAM-1 and matrix metalloproteinase 9 (MMP-9) whereby ICAM-1 provides a cell surface docking mechanism for proMMP-9, which, upon activation, proteolytically cleaves the extracellular domain of ICAM-1 leading to its release from the cell surface. MMP-9-dependent shedding of ICAM-1 is found to augment tumor cell resistance to natural killer (NK) cell-mediated cytotoxicity. Taken together, our observations propose a mechanism for ICAM-1 shedding from the cell surface and provide support for MMP involvement in tumor cell evasion of immune surveillance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid tumor growth triggers a wound healing response. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts (also referred to as cancer-associated fibroblasts) primarily, but not exclusively, in response to transforming growth factor-β (TGF-β). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among proteases implicated in stroma remodeling, matrix metalloproteinases (MMPs), including MMP-9, play a prominent role. Recent evidence indicates that MMP-9 recruitment to the tumor cell surface enhances tumor growth and invasion. In the present work, we addressed the potential relevance of MMP-9 recruitment to and activity at the surface of fibroblasts. We show that recruitment of MMP-9 to the fibroblast cell surface occurs through its fibronectin-like (FN) domain and that the molecule responsible for the recruitment is lysyl hydroxylase 3 (LH3). Functional assays suggest that both pro- and active MMP-9 trigger α-smooth muscle actin expression in cultured fibroblasts, reflecting myofibroblast differentiation, possibly as a result of TGF-β activation. Moreover, the recombinant FN domain inhibited both MMP-9-induced TGF-β activation and α-smooth muscle actin expression by displacing MMP-9 from the fibroblast cell surface. Together our results uncover LH3 as a new docking receptor of MMP-9 on the fibroblast cell surface and demonstrate that the MMP-9 FN domain is essential for the interaction. They also show that the recombinant FN domain inhibits MMP-9-induced TGF-β activation and fibroblast differentiation, providing a potentially attractive therapeutic reagent toward attenuating tumor progression where MMP-9 activity is strongly implicated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: There is currently no identified marker predicting benefit from Bev in patients with breast cancer (pts). We monitored prospectively 6 angiogenesis-related factors in the blood of advanced stage pts treated with a combination of Bev and PLD in a phase II trial of the Swiss Group for Clinical Cancer Research, SAKK.Methods: Pts received PLD (20 mg/m2) and Bev (10 mg/kg) every 2 weeks for a maximum of 12 administrations, followed by Bev monotherapy until progression or severe toxicity. Blood samples were collected at baseline, during treatment and at treatment discontinuation. Enzyme-linked immunosorbent assays (Quantikine, R&DSystems and Reliatech) were used to measure vascular endothelial growth factor (VEGF), placental growth factor (PlGF), matrix metalloproteinase 9 (MMP-9) and soluble VEGF receptors -1, -2 and -3. The natural log-transformed (ln) data for each factor was analyzed by analysis of variance (ANOVA) model to investigate differences between the mean values of the subgroups of interest (where a = 0.05), based on the best tumor response by RECIST.Results: 132 samples were collected in 41 pts. The mean of baseline ln MMP-9 levels was significantly lower in pts with tumor progression than those with tumor response (p=0.0202, log fold change=0.8786) or disease control (p=0.0035, log fold change=0.8427). Higher MMP-9 level was a significant predictor of superior progression free survival (PFS): p=0.0417, hazard ratio=0.574, 95% CI=0.336-0.979. In a multivariate cox proportional hazards model, containing performance status, disease free interval, number of tumor sites, visceral involvement and prior adjuvant chemotherapy, using stepwise regression baseline MMP-9 was still a statistically 117P Table 1. SOLTI-0701* AC01B07* NU07B1* SOR+CAP N=20 PL+CAP N=33 SOR+ GEM/CAP N=23 PL+ GEM/CAP N=27 SOR+PAC N=48 PL+PAC N=46 Baseline characteristics Age, median (range), y 49 (32-72) 53 (30-78 54 (32-69) 57 (31-82) 50 (27-80) 52 (23-74) AJCC stage, n (%) IIIB/IIIC 3 (15) 6 (18) 0 (0) 3 (11) 8 (17) 9 (20) IV 17 (85) 27 (82) 23 (100) 24 (89) 40 (83) 37 (80) Metastatic site, n (%) Non-visceral 3 (15) 6 (18) 7 (30) 6 (22) 9 (19) 17 (37) Visceral 17 (85) 27 (82) 16 (70) 21 (78) 39 (81) 29 (63) Prior metastatic chemo, n (%) 8 (40) 15 (45) 21 (91) 25 (93) - - Efficacy PFS, median, mo 4.3 2.5 3.1 2.6 5.6 5.5 HR (95% CI)_ 0.60 (0.31, 1.14) 0.57 (0.30, 1.09) 0.86 (0.50, 1.45) 1-sided P value_ 0.055 0.044 0.281 Overall survival, median, mo 17.5 16.1 Pending 14.7 18.2 HR (95% CI)_ 0.98 (0.50, 1.89) 1.11 (0.64, 1.94) 1-sided P value_ 0.476 0.352 Safety N=20 N=33 N=22 N=27 N=46 N=46 Tx-emergent Grade 3/4, n (%) 15 (75) 16 (48) 20 (91) 17 (63) 36 (78) 16 (35) Grade 3§ hand-foot skin reaction/ syndrome 8 (40) 5 (15) 8 (36) 0 (0) 14 (30) 2 (4) *Efficacy results based on intent-to-treat population and safety results based on safety population (pts who received study drug[s]); _Cox regression within each subgroup; _log-rank test within each subgroup; §maximum toxicity grade for hand-foot skin reaction/syndrome; AJCC, American Joint Committee on Cancer mittedabstractsª The Author 2011. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com Downloaded from annonc.oxfordjournals.org at Bibliotheque Cantonale et Universitaire on June 6, 2011 significant factor (p=0.0266). The results of the other measured factors were presented elsewhere.Conclusions: Higher levels of MMP-9 could predict tumor response and superior PFSin pts treated with a combination of Bev and PLD. These exploratory results justify further investigations of MMP-9 in pts treated with Bev combinations in order to assess its role as a prognostic and predictive factor.Disclosure: K. Zaman: Participation in advisory board of Roche; partial sponsoring ofthe study by Roche (the main sponsor was the Swiss Federation against Cancer (Oncosuisse)). B. Thu¨rlimann: stock of Roche; Research grants from Roche. R. vonMoos: Participant of Advisory Board and Speaker honoraria

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Bronchopulmonary dysplasia (BPD) remains the leading cause of chronic pulmonary morbidity among preterm neonates. However, the exact pathophysiology is still unknown. Here we present the first results from a new model inteAbstracts, 25th International Workshop on Surfactant Replacement 400 Neonatology 2010;97:395-400 grating the most common risk factors for BPD (lung immaturity, inflammation, mechanical ventilation (MV), oxygen), which allows long-term outcome evaluation due to a non-traumatic intubation procedure. Objectives: To test the feasibility of a new rat model by investigating effects of MV, inflammation and oxygen applied to immature lungs after a ventilation-free interval. Methods: On day 4, 5, or 6 newborn rats were given an intraperitoneal injection of lipopolysaccharides to induce a systemic inflammation. 24 h later they were anesthetized, endotracheally intubated and ventilated for 8 h with 60% oxygen. After weaning of anesthesia and MV the newborn rats were extubated and returned to their mothers. Two days later they were killed and outcome measurements were performed (histology, quantitative RT-PCR) and compared to animals investigated directly after MV. Results: Directly after MV, histological signs of ventilator-induced lung injury were found. After 48 h, the first signs of early BPD were seen with delayed alveolar formation. Expression of inflammatory genes was only transiently increased. After 48 h genes involved in alveolarization, such as matrix metalloproteinase-9 and tropoelastin, showed a significant change of their expression. Conclusion: For the first time we can evaluate in a newborn rat model the effects of MV after a ventilation-free interval. This allows discrimination between immediate response genes and delayed changes of expression of more structural genes involved in alveolarization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chronic periaortitis (CP) is an uncommon inflammatory disease which primarily involves the infrarenal portion of the abdominal aorta. However, CP should be regarded as a generalized disease with three different pathophysiological entities, namely idiopathic retroperitoneal fibrosis (RPF), inflammatory abdominal aortic aneurysm and perianeurysmal RPF. These entities share similar histopathological characteristics and finally will lead to fibrosis of the retroperitoneal space. Beside fibrosis, an infiltrate with variable chronic inflammatory cell is present. The majority of these cells are lymphocytes and macrophages as well as vascular endothelial cells, most of which are HLA-DR-positive. B and T cells are present with a majority of T cells of the T-helper phenotype. Cytokine gene expression analysis shows the presence of interleukin (IL)-1alpha, IL-2, IL-4, interferon-gamma and IL-2 receptors. Adhesion molecules such as E-selectin, intercellular adhesion molecule-1 and the vascular cell adhesion molecule-1 were also found in aortic tissue, and may play a significant role in CP pathophysiology. Although CP pathogenesis remains unknown, an exaggerated inflammatory response to advanced atherosclerosis (ATS) has been postulated to be the main process. Autoimmunity has also been proposed as a contributing factor based on immunohistochemical studies. The suspected allergen may be a component of ceroid, which is elaborated within the atheroma. We review the pathogenesis and the pathophysiology of CP, and its potential links with ATS. Clinically relevant issues are summarized in each section with regard to the current working hypothesis of this complex inflammatory disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anti-angiogenic therapies are currently in cancer clinical trials, but to date there are no established tests for evaluating the angiogenic status of a patient. We measured 11 circulating angiogenesis-associated molecules in cancer patients before and after local treatment. The purpose of our study was to screen for possible relationships among the different molecules and between individual molecules and tumor burden. We measured VEGF-A, PlGF, SCF, MMP-9, EDB+ -fibronectin, sVEGFR-2, sVEGFR-1, salphaVbeta3, sTie-2, IL-8 and CRP in the blood of 22 healthy volunteers, 17 early breast, 17 early colorectal, and 8 advanced sarcoma/melanoma cancer patients. Breast cancer patients had elevated levels of VEGF-A and sTie-2, colorectal cancer patients of VEGF-A, MMP-9, sTie-2, IL-8 and CRP, and melanoma/sarcoma patients of sVEGFR-1. salphaVbeta3 was decreased in colorectal cancer patients. A correlation between VEGF-A and MMP-9 was found. After tumor removal, MMP-9 and salphaVbeta3 significantly decreased in breast and CRP in colorectal cancer, whereas sVEGFR-1 increased in colorectal cancer patients. In sarcoma/melanoma patients treated regionally with TNF and chemotherapy we observed a rise in VEGF-A, SCF, VEGFR-2, MMP-9, Tie-2 and CRP, a correlation between CRP and IL-8, and a decreased in sVEGFR-1 levels. In conclusion, among all factors measured, only VEGF-A and MMP-9 consistently correlated to each other, elevated CRP levels were associated with tumor burden, whereas sVEGF-R1 increased after tumor removal in colorectal cancer. Treatment with chemotherapy and TNF induced changes consistent with an angiogenic switch. These results warrant a prospective study to compare the effect of surgical tumor removal vs. chemotherapy on some of these markers and to evaluate their prognostic/predictive value.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background and objectives Interleukin 18 (IL-18) is a pleiotropic cytokine involved in rheumatoid arthritis (RA) pathogenesis. This study was carried out to evaluate the effi cacy of IL-18 binding protein (IL-18BP) gene therapy in the rat adjuvant- induced arthritis (AIA) model and to decipher the mechanisms by which IL-18BP delivery lessens bone destruction.Materials and methods Arthritis was induced in female Lewis rat by Mycobacterium butyricum and the mRNA expression of IL-18 and IL-18BP was determined in the joints. In a preventive study, rats were divided into an adenovirus producing IL-18BP-Fc (AdmIL-18BP-Fc) group (n=8) and an adenovirus producing green fl uorescent protein (AdGFP) group (n=7). On day 8 after AIA induction, adenoviruses were injected. Clinical parameters were assessed. At day 18, during maximal arthritis, the rats were euthanized, ankles were collected and x-rays were performed. mRNA and protein were extracted from joints for analysis by quantitative reverse transcriptase-PCR, multiplex, Western blot and zymography.Results The authors observed a decrease in the (IL-18BP/ IL-18) ratio from day 7 to 45. Administration of AdmIL-18BPd-Fc decreased clinical parameters and prevented bone and joint destruction compared to AdGFP administration. IL-18BP delivery reduced the (receptor activator of nuclear factor κB ligand (RANKL)/osteoprotegerin (OPG)) ratio by 70%, the matrix metalloproteinase 9 (MMP9) level by 33% and the tartrate-resistant acid phosphatase (TRAP) level by 44% in the joint homogenates from AdmIL-18BPd-Fc compared to AdGFP treated rats.Conclusions In rat AIA, a decrease in the (IL-18BP/IL-18) ratio was observed. IL-18BP delivery prevented joint and bone destruction by downregulating MMP9, (RANKL/OPG) and TRAP, suggesting a potential benefi t of a similar therapy in RA.Abstract topics Towards novel therapeutic strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Apoptosis, differentiation, and proliferation are cellular responses which play a pivotal role in wound healing. During this process PPARbeta translates inflammatory signals into prompt keratinocyte responses. We show herein that PPARbeta modulates Akt1 activation via transcriptional upregulation of ILK and PDK1, revealing a mechanism for the control of Akt1 signaling. The resulting higher Akt1 activity leads to increased keratinocyte survival following growth factor deprivation or anoikis. PPARbeta also potentiates NF-kappaB activity and MMP-9 production, which can regulate keratinocyte migration. Together, these results provide a molecular mechanism by which PPARbeta protects keratinocytes against apoptosis and may contribute to the process of skin wound closure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives In this study, we have investigated the effects of cannabidiol (CBD) on myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type I diabetic cardiomyopathy and primary human cardiomyocytes exposed to high glucose. Background Cannabidiol, the most abundant nonpsychoactive constituent of Cannabis sativa (marijuana) plant, exerts anti-inflammatory effects in various disease models and alleviates pain and spasticity associated with multiple sclerosis in humans. Methods Left ventricular function was measured by the pressure-volume system. Oxidative stress, cell death, and fibrosis markers were evaluated by molecular biology/biochemical techniques, electron spin resonance spectroscopy, and flow cytometry. Results Diabetic cardiomyopathy was characterized by declined diastolic and systolic myocardial performance associated with increased oxidative-nitrative stress, nuclear factor-kappa B and mitogen-activated protein kinase (c-Jun N-terminal kinase, p-38, p38 alpha) activation, enhanced expression of adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1), tumor necrosis factor-alpha, markers of fibrosis (transforming growth factor-beta, connective tissue growth factor, fibronectin, collagen-1, matrix metalloproteinase-2 and -9), enhanced cell death (caspase 3/7 and poly[adenosine diphosphate-ribose] polymerase activity, chromatin fragmentation, and terminal deoxynucleotidyl transferase dUTP nick end labeling), and diminished Akt phosphorylation. Remarkably, CBD attenuated myocardial dysfunction, cardiac fibrosis, oxidative/nitrative stress, inflammation, cell death, and interrelated signaling pathways. Furthermore, CBD also attenuated the high glucose-induced increased reactive oxygen species generation, nuclear factor-kappa B activation, and cell death in primary human cardiomyocytes. Conclusions Collectively, these results coupled with the excellent safety and tolerability profile of CBD in humans, strongly suggest that it may have great therapeutic potential in the treatment of diabetic complications, and perhaps other cardiovascular disorders, by attenuating oxidative/nitrative stress, inflammation, cell death and fibrosis. (J Am Coll Cardiol 2010;56:2115-25) (C) 2010 by the American College of Cardiology Foundation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In addition to their well-known antinociceptive action, opioids can modulate non-neuronal functions, such as immune activity and physiology of different cell types. Several findings suggest that the delta-opioid receptor (DOR) and its endogenous ligands (enkephalins) are important players in cell differentiation and proliferation. Here we show the expression of DOR in mouse skin and human skin cultured fibroblasts and keratinocytes using RT-PCR. In DOR knock-out (KO) mice, a phenotype of thinner epidermis and higher expression of cell differentiation marker cytokeratin 10 (CK 10) were observed compared with wild type (WT). Using a burn wound model, significant wound healing delay (about 2 days) and severe epidermal hypertrophy were shown at the wound margin of DOR KO mice. This wound healing delay was further investigated by immunohistochemistry using markers for proliferation, differentiation, re-epithelialization, and dermal repair (CK 6, CK 10, and collagen IV). The levels of all these markers were increased in wounds of KO mice compared with WT. During the wound healing, the epidermal thickness in KO mice augments faster and exceeds that of the WT by day 3. These results suggest an essential role of DOR in skin differentiation, proliferation, and migration, factors that are important for wound healing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CD44 is the major cell-surface receptor for hyaluronan, which is implicated in cell-cell and cell-matrix adhesion, cell migration, and signaling. Studies have shown that CD44-dependent migration requires CD44 to be shed from the cell surface and that matrix metalloproteinase-mediated cleavage may provide an underlying mechanism. However, the full spectrum of proteases that may participate in CD44 shedding has yet to be defined. In this issue, Anderegg et al. demonstrate that ADAM10, but not ADAM17 or MMP14, mediates constitutive shedding of CD44 in human melanoma cells and that knockdown of ADAM10 blocks the antiproliferative activity of the soluble proteolytic cleavage product of CD44.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The anti-angiogenic drug, bevacizumab (Bv), is currently used in the treatment of different malignancies including breast cancer. Many angiogenesis-associated molecules are found in the circulation of cancer patients. Until now, there are no prognostic or predictive factors identified in breast cancer patients treated with Bv. We present here the first results of the prospective monitoring of 6 angiogenesis-related molecules in the peripheral blood of breast cancer patients treated with a combination of Bv and PLD in the phase II trial, SAKK 24/06. Methods: Patients were treated with PLD (20 mg/m2) and Bv (10 mg/kg) on days 1 and 15 of each 4-week cycle for a maximum of 6 cycles, followed by Bv monotherapy maintenance (10 mg/m2 q2 weeks) until progression or severe toxicity. Plasma and serum samples were collected at baseline, after 2 months of therapy, then every 3 months and at treatment discontinuation. Enzyme-linked immunosorbent assays (Quantikine, R&D Systems and Reliatech) were used to measure the expression levels of human vascular endothelial growth factor (hVEGF), placental growth factor (hPlGF), matrix metalloproteinase 9 (hMMP9) and soluble VEGF receptors hsVEGFR-1, hsVEGFR-2 and hsVEGFR-3. The log-transformed data (to reduce the skewness) for each marker was analyzed using an analysis of variance (ANOVA) model to determine if there was a difference between the mean of the subgroups of interest (where α = 0.05). The untransformed data was also analyzed in the same manner as a "sensitivity" check. Results: 132 blood samples were collected in 41 out of 43 enrolled patients. Baseline levels of the molecules were compared to disease status according to RECIST. There was a statistically significant difference in the mean of the log-transformed levels of hMMP9 between responders [CR+PR] versus the mean in patients with PD (p-value=0.0004, log fold change=0.7536), and between patients with disease control [CR+PR+SD] and those with PD (p-value=<0.0001, log fold change=0.81559), with the log-transformed level of hMMP9 being higher for the responder group. The mean of the log-transformed levels of hsVEGFR-1 was statistically significantly different between patients with disease control [CR+PR+SD] and those with PD (p-value=0.0068, log fold change=-0.6089), where the log-transformed level of hsVEGFR-1 was lower for the responder group. The log-transformed level of hMMP9 at baseline was identified as a significant prognostic factor in terms of progression free survival (PFS): p-value=0.0417, hazard ratio (HR)=0.574 with a corresponding 95% confidence interval (0.336 - 0.979)). No strong correlation was shown either between the log-transformed levels of hsVEGF, hPlGF, hsVEGFR-2 or hsVEGFR-3 and clinical response or the occurrence of severe toxicity, or between the levels of the different molecules. Conclusions: Our results suggest that baseline plasma level of the matrix metalloproteinase, hMMP9, could predict tumor response and PFS in patients treated with a combination of Bv and PLD. These data justify further investigation in breast cancer patients treated with anti-angiogenic therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Doxorubicin (DOX) is a potent available antitumor agent; however, its clinical use is limited because of its cardiotoxicity. Cell death is a key component in DOX-induced cardiotoxicity, but its mechanisms are elusive. Here, we explore the role of superoxide, nitric oxide (NO), and peroxynitrite in DOX-induced cell death using both in vivo and in vitro models of cardiotoxicity. Western blot analysis, real-time PCR, immunohistochemistry, flow cytometry, fluorescent microscopy, and biochemical assays were used to determine the markers of apoptosis/necrosis and sources of NO and superoxide and their production. Left ventricular function was measured by a pressure-volume system. We demonstrated increases in myocardial apoptosis (caspase-3 cleavage/activity, cytochrome c release, and TUNEL), inducible NO synthase (iNOS) expression, mitochondrial superoxide generation, 3-nitrotyrosine (NT) formation, matrix metalloproteinase (MMP)-2/MMP-9 gene expression, poly(ADP-ribose) polymerase activation [without major changes in NAD(P)H oxidase isoform 1, NAD(P)H oxidase isoform 2, p22(phox), p40(phox), p47(phox), p67(phox), xanthine oxidase, endothelial NOS, and neuronal NOS expression] and decreases in myocardial contractility, catalase, and glutathione peroxidase activities 5 days after DOX treatment to mice. All these effects of DOX were markedly attenuated by peroxynitrite scavengers. Doxorubicin dose dependently increased mitochondrial superoxide and NT generation and apoptosis/necrosis in cardiac-derived H9c2 cells. DOX- or peroxynitrite-induced apoptosis/necrosis positively correlated with intracellular NT formation and could be abolished by peroxynitrite scavengers. DOX-induced cell death and NT formation were also attenuated by selective iNOS inhibitors or in iNOS knockout mice. Various NO donors when coadministered with DOX but not alone dramatically enhanced DOX-induced cell death with concomitant increased NT formation. DOX-induced cell death was also attenuated by cell-permeable SOD but not by cell-permeable catalase, the xanthine oxidase inhibitor allopurinol, or the NADPH oxidase inhibitors apocynine or diphenylene iodonium. Thus, peroxynitrite is a major trigger of DOX-induced cell death both in vivo and in vivo, and the modulation of the pathways leading to its generation or its effective neutralization can be of significant therapeutic benefit.