149 resultados para mating time
em Université de Lausanne, Switzerland
Mechanisms of reproductive isolation between an ant species of hybrid origin and one of its parents.
Resumo:
The establishment of new species by hybridization is difficult because it requires the development of reproductive isolation (RI) in sympatry to escape the homogenizing effects of gene flow from the parental species. Here we investigated the role of two pre- and two postzygotic mechanisms of RI in a system comprising two interdependent Pogonomyrmex harvester ant lineages (the H1 and H2 lineages) of hybrid origin and one of their parental species (P. rugosus). Similar to most other ants, P. rugosus is characterized by an environmental system of caste determination with female brood developing either into queens or workers depending on nongenetic factors. By contrast, there is a strong genetic component to caste determination in the H1 and H2 lineages because the developmental fate of female brood depends on the genetic origin of the parents, with interlineage eggs developing into workers and intralineage eggs developing into queens. The study of a mixed mating aggregation revealed strong differences in mating flight timing between P. rugosus and the two lineages as a first mechanism of RI. A second important prezygotic mechanism was assortative mating. Laboratory experiments also provided support for one of the two investigated mechanisms of postzygotic isolation. The majority of offspring produced from the few matings between P. rugosus and the lineages aborted at the egg stage. This hybrid inviability was under maternal influence, with hybrids produced by P. rugosus queens being always inviable whereas a small proportion of H2 lineage queens produced large numbers of adult hybrid offspring. Finally, we found no evidence that genetic caste determination acted as a second postzygotic mechanism reducing gene flow between P. rugosus and the H lineages. The few viable P. rugosus-H hybrids were not preferentially shunted into functionally sterile workers but developed into both workers and queens. Overall, these results reveal that the nearly complete (99.5%) RI between P. rugosus and the two hybrid lineages stems from the combination of two typical prezygotic mechanisms (mating time divergence and assortative mating) and one postzygotic mechanism (hybrid inviability).
Resumo:
Reproductive success is determined by the presence and timing of encounter of mates. The latter depends on species-specific reproductive characteristics (e.g. initiation/duration of the mating window), season, and reproductive strategies (e.g. intensity of choosiness) that may potentially mitigate constraints imposed by mating windows. Despite their potentially crucial role for fitness and population dynamics, limited evidence exists about mating window initiation, duration and reproductive strategies. Here, we experimentally tested the mechanisms of initiation and the duration of the common lizard's Zootoca vivipara mating window, by manipulating the timing of mate encounter and analyzing its effect on (re-)mating probability. We furthermore tested treatment effects on female reproductive strategies, by measuring female choosiness. The timing of mate encounter and season did not significantly affect mating probability. However, a longer delay until mate encounter reduced female choosiness. Re-mating probability decreased with re-mating delay and was independent of mating delay. This indicates that mating window initiation depends on mate encounter, that its duration is fixed, and that plastic reproductive strategies exist. These findings contrast with previous beliefs and shows that mating windows per se may not necessarily constrain reproductive success, which is congruent with rapid range expansion and absence of positive density-effects on reproductive success (Allee effects). In summary, our results show that predicting the effect of mating windows on reproduction is complex and that experimental evidence is essential for evaluating their effect on reproduction and reproductive strategies, both being important determinants of population dynamics and the colonization of new habitats.
Resumo:
Inbreeding depression is one of the main forces opposing the evolution of self-fertilization. Of central importance is the hypothesis that inbreeding depression and selfing coevolve antagonistically, generating either low selfing rate and high inbreeding depression or vice versa. However, there is limited evidence for this coevolution within species. We investigated this topic in the hermaphroditic snail Physa acuta. In this species, isolated individuals delay the onset of egg laying compared to individuals having access to mates. Longer delays (''waiting times'') indicate more intense selfing avoidance. We measured inbreeding depression and waiting time in a large quantitative-genetic experiment (281 outbred families derived from 26 natural populations). We observed large genetic variance for both traits and a strong positive genetic covariance between them, most of which resided within rather than among populations. It means that, within populations, individuals with higher mutation load avoided selfing more strongly on average. This genetic covariance may result from pleiotropy and/or linkage disequilibrium. Whatever its genetic architecture, the fact it emerges specifically when individuals are deprived of mates suggests it is not fortuitous and rather reflects the action of natural selection. We conclude that a diversity of mating strategies can arise within populations subjected to variation in inbreeding depression.
Resumo:
Investigating the factors affecting the strength of sexual selection is important for understanding the evolution of sex-specific morphological and behavioural traits. Traditionally, sexual selection studies focus on male ornaments, although recent evidence indicates that sexual selection mechanisms also target organismal performance. In the present study, we investigated the role of sexually dimorphic morphological and performance traits of the common (viviparous) lizard (Zootoca vivipara, Jacquin 1787) with respect to determining mating behaviour. Using an experimental set-up controlling for size differences, we found that males with longer tails had a higher probability of mating a female. Unexpectedly, males with lower bite forces had an advantage over males with higher bite forces, whereas males with bigger heads copulated for a longer time with the female. This shows that predicting mating success is not straightforward and is sometimes counterintuitive because a longer tail appears to be beneficial, whereas biting harder is not, for male Z. vivipara in a male-female interaction context
Resumo:
Several internally fertilizing hermaphroditic animals can only perform one sexual role at a time. In such species, two individuals that engage in a copulation may have different interests in acting as male or female. A gender choice must be made which, if both individuals have the same preference, may give rise to a severe sexual conflict. Here we tested the hypothesis that gender choice could be influenced by mating history, using the freshwater snail, Physa acuta. We recorded the copulatory behaviour of 240 pairs composed of a focal individual and a partner, each either short- or long-isolated. We found that the time to the first copulation was unaffected by isolation status, suggesting that first contacts in this species are random processes. In contrast, the duration of copulations and the frequency of rejection behaviours suggested that individual gender preference switches from male biased to female biased as isolation increases. In addition, snails rejected copulations more frequently when presented to a partner with the same isolation status. Reciprocity, measured as the rate of gender swapping between the first and second copulations, was high irrespective of gender status. We suggest possible evolutionary causes for this gender preference switch and discuss its potential importance in natural population as well as its consequences for the maintenance of hermaphroditism
Resumo:
Background and Aims The frequency at which males can be maintained with hermaphrodites in androdioecious populations is predicted to depend on the selfing rate, because self-fertilization by hermaphrodites reduces prospective siring opportunities for males. In particular, high selfing rates by hermaphrodites are expected to exclude males from a population. Here, the first estimates are provided of the mating system from two wild hexaploid populations of the androdioecious European wind-pollinated plant M. annua with contrasting male frequencies.Methods Four diploid microsatellite loci were used to genotype 19-20 progeny arrays from two populations of M. annua, one with males and one without. Mating-system parameters were estimated using the program MLTR.Key Results Both populations had similar, intermediate outcrossing rates (t(m) = 0.64 and 0.52 for the population with and without males, respectively). The population without males showed a lower level of correlated paternity and biparental inbreeding and higher allelic richness and gene diversity than the population with males.Conclusions The results demonstrate the utility of new diploid microsatellite loci for mating system analysis in a hexaploid plant. It would appear that androdioecious M. annua has a mixed-mating system in the wild, an uncommon finding for wind-pollinated species. This study sets a foundation for future research to assess the relative importance of the sexual system, plant-density variation and stochastic processes for the regulation of male frequencies in M. annua over space and time.
Resumo:
Recent studies indicate that directional female mate choice and order-dependent female mate choice importantly contribute to non-random mating patterns. In species where females prefer larger sized males, disentangling different hypotheses leading to non-random mating patterns is especially difficult, given that male size usually correlates with behaviours that may lead to non-random mating (e.g. size-dependent emergence from hibernation, male fighting ability). Here we investigate female mate choice and order-dependent female mate choice in the polygynandrous common lizard (Lacerta vivipara). By sequentially presenting males in random order to females, we exclude non-random mating patterns potentially arising due to intra-sexual selection (e.g. male-male competition), trait-dependent encounter probabilities, trait-dependent conspicuousness, or trait-dependent emergence from hibernation. To test for order-dependent female mate choice we investigate whether the previous mating history affects female choice. We show that body size and body condition of the male with which a female mated for the first time were bigger and better, respectively, than the average body size and body condition of the rejected males. There was a negative correlation between body sizes of first and second copulating males. This indicates that female mate choice is dependent on the previous mating history and it shows that the female's choice criteria are non-static, i.e. non-directional. Our study therefore suggests that context-dependent female mate choice may not only arise due to genotype-environment interactions, but also due to other female mating strategies, i.e. order-dependent mate choice. Thus context-dependent female mate choice might be more frequent than previously thought.
Resumo:
Eusocial animal societies are typified by the presence of a helper (worker) caste which predominantly cares for young offspring in a social group while investing little in their own direct reproduction. A key question is what determines whether an individual becomes a worker or leaves to initiate her own reproduction. In some insects, caste is determined nutritionally during development. In others, and in vertebrate societies, adults are totipotent and the cues that determine caste are less well known. The mate limitation hypothesis (MLH) states that a female's mating status acts as a cue for caste determination: females that mate become reproductives, while those that fail to mate become workers. The MLH is consistent with empirical observations in sweat bees showing that over the course of the nesting season, there are increases in both the proportion of females that become reproductives and the frequency of males in the mating pool. We modelled a foundress's offspring sex-ratio strategy to investigate whether an increasingly male-biased operational sex-ratio over time is evolutionarily stable under the MLH. Our results indicate that such a pattern could occur if early workers were more valuable than late workers. This pattern was then more likely if male mortality was high, if worker mortality was low, if the value of a worker was high and if the period over which workers can help was short. Our results suggest that the MLH can be evolutionarily stable, but only under restrictive conditions. Manipulative experiments are now required to investigate whether mating determines caste in nature.
Resumo:
Mating plugs occluding the female gonopore after mating are a widespread phenomenon. In scorpions, two main types of mating plugs are found: sclerotized mating plugs being parts of the spermatophore that break off during mating, and gel-like mating plugs being gelatinous fluids that harden in the female genital tract. In this study, the gel-like mating plug of Euscorpius italicus was investigated with respect to its composition, fine structure, and changes over time. Sperm forms the major component of the mating plug, a phenomenon previously unknown in arachnids. Three parts of the mating plug can be distinguished. The part facing the outside of the female (outer part) contains sperm packages containing inactive spermatozoa. In this state, sperm is transferred. In the median part, the sperm packages get uncoiled to single spermatozoa. In the inner part, free sperm is embedded in a large amount of secretions. Fresh mating plugs are soft gelatinous, later they harden from outside toward inside. This process is completed after 3-5 days. Sperm from artificially triggered spermatophores could be activated by immersion in insect Ringer's solution indicating that the fluid condition in the females' genital tract or females' secretions causes sperm activation. Because of the male origin of the mating plug, it has likely evolved under sperm competition or sexual conflict. As females refused to remate irrespective of the presence or absence of a mating plug, females may have changed their mating behavior in the course of evolution from polyandry to monandry.
Resumo:
Colonization is likely to be more successful for species with an ability to self-fertilize and thus to establish new populations as single individuals. As a result, self-compatibility should be common among colonizing species. This idea, labelled 'Baker's law', has been influential in discussions of sexual-system and mating-system evolution. However, its generality has been questioned, because models of the evolution of dispersal and the mating system predict an association between high dispersal rates and outcrossing rather than selfing, and because of many apparent counter examples to the law. The contrasting predictions made by models invoking Baker's law versus those for the evolution of the mating system and dispersal urges a reassessment of how we should view both these traits. Here, I review the literature on the evolution of mating and dispersal in colonizing species, with a focus on conceptual issues. I argue for the importance of distinguishing between the selfing or outcrossing rate and a simple ability to self-fertilize, as well as for the need for a more nuanced consideration of dispersal. Colonizing species will be characterized by different phases in their life pattern: dispersal to new habitat, implying an ecological sieve on dispersal traits; establishment and a phase of growth following colonization, implying a sieve on reproductive traits; and a phase of demographic stasis at high density, during which new trait associations can evolve through local adaptation. This dynamic means that the sorting of mating-system and dispersal traits should change over time, making simple predictions difficult.
Resumo:
The benefits obtained from mating are usually condition-dependent, favouring the evolution of flexible investment during copulation, for instance, in terms of invested time, energy, or sperm. Flexible investment strategies are predicted to depend on the likelihood of acquiring alternative mates and therefore they should depend on the timing of mate encounter. However, scarce experimental evidence for this hypothesis exists. Here we manipulated the time delay until first mating and the interval between first and second mating in the polygynandrous common lizard, Zootoca vivipara. We determined treatment effects on fertilisation success and copulation duration, the latter being a proxy for investment in mating and for quantity of transferred sperm. The duration of the second copulation decreased with increasing inter-mating interval and depended on the fertilisation success of first mates. The former provides evidence for time-dependent investment strategies, most likely resulting from the progression of the female's reproductive cycle. Fertilisation success of first mates increased with increasing inter-mating interval and was higher when females were closer to ovulation, showing that flexible investment strategies significantly affected male reproductive success. This points to fertilisation assurance, which may mitigate negative effects of low population density on reproductive success, e.g. Allee effects.
Resumo:
Abstract In species with social hierarchies, the death of dominant individuals typically upheaves the social hierarchy and provides an opportunity for subordinate individuals to become reproductives. Such a phenomenon occurs in the monogyne form of the fire ant, Solenopsis invicta, where colonies typically contain a single wingless reproductive queen, thousands of workers and hundreds of winged nonreproductive virgin queens. Upon the death of the mother queen, many virgin queens shed their wings and initiate reproductive development instead of departing on a mating flight. Workers progressively execute almost all of them over the following weeks. To identify the molecular changes that occur in virgin queens as they perceive the loss of their mother queen and begin to compete for reproductive dominance, we collected virgin queens before the loss of their mother queen, 6 h after orphaning and 24 h after orphaning. Their RNA was extracted and hybridized against microarrays to examine the expression levels of approximately 10 000 genes. We identified 297 genes that were consistently differentially expressed after orphaning. These include genes that are putatively involved in the signalling and onset of reproductive development, as well as genes underlying major physiological changes in the young queens.
Resumo:
Inbreeding avoidance is predicted to induce sex biases in dispersal. But which sex should disperse? In polygynous species, females pay higher costs to inbreeding and thus might be expected to disperse more, but empirical evidence consistently reveals male biases. Here, we show that theoretical expectations change drastically if females are allowed to avoid inbreeding via kin recognition. At high inbreeding loads, females should prefer immigrants over residents, thereby boosting male dispersal. At lower inbreeding loads, by contrast, inclusive fitness benefits should induce females to prefer relatives, thereby promoting male philopatry. This result points to disruptive effects of sexual selection. The inbreeding load that females are ready to accept is surprisingly high. In absence of search costs, females should prefer related partners as long as delta<r/(1+r) where r is relatedness and delta is the fecundity loss relative to an outbred mating. This amounts to fitness losses up to one-fifth for a half-sib mating and one-third for a full-sib mating, which lie in the upper range of inbreeding depression values currently reported in natural populations. The observation of active inbreeding avoidance in a polygynous species thus suggests that inbreeding depression exceeds this threshold in the species under scrutiny or that inbred matings at least partly forfeit other mating opportunities for males. Our model also shows that female choosiness should decline rapidly with search costs, stemming from, for example, reproductive delays. Species under strong time constraints on reproduction should thus be tolerant of inbreeding.
Resumo:
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been introduced in diagnostic microbiology laboratories for the identification of bacterial and yeast strains isolated from clinical samples. In the present study, we prospectively compared MALDI-TOF MS to the conventional phenotypic method for the identification of routine isolates. Colonies were analyzed by MALDI-TOF MS either by direct deposition on the target plate or after a formic acid-acetonitrile extraction step if no valid result was initially obtained. Among 1,371 isolates identified by conventional methods, 1,278 (93.2%) were putatively identified to the species level by MALDI-TOF MS and 73 (5.3%) were identified to the genus level, but no reliable identification was obtained for 20 (1.5%). Among the 1,278 isolates identified to the species level by MALDI-TOF MS, 63 (4.9%) discordant results were initially identified. Most discordant results (42/63) were due to systematic database-related taxonomical differences, 14 were explained by poor discrimination of the MALDI-TOF MS spectra obtained, and 7 were due to errors in the initial conventional identification. An extraction step was required to obtain a valid MALDI-TOF MS identification for 25.6% of the 1,278 valid isolates. In conclusion, our results show that MALDI-TOF MS is a fast and reliable technique which has the potential to replace conventional phenotypic identification for most bacterial strains routinely isolated in clinical microbiology laboratories.