252 resultados para mannose-binding lectin
em Université de Lausanne, Switzerland
Resumo:
Background: There is an increasing amount of data associating MBL deficiency with a higher susceptibility to meningococca[ disease. In addition, meningococca[ disease has been reported in patients with various immunosuppressive conditions. However, to our knowledge, only three cases of meningococca[ disease have been reported in solid organ recipients (SOT). Methods & Results: A 32 year-old male patient underwent cadaveric kidney transplantation for endstage renal disease of unknown origin. On day 71 post-transplantation he developed fever (39.6°C), shaking chilis, and tachycardia without hypotension. At this time, immunosuppression consisted of tacro[imus, prednisone 10mg daily and mycopheno[ ate mofeti[ 2 g daily. Physical examination on admission was normal, except for two small petechia[ lesions on the forearm. No meningeal signs were present. Three sets of blood cultures grew Neisseria meningitidis group C susceptible to ceftriaxone (MIC=0.003mg/[). Antibiotic therapy consisted in intravenous ceftriaxone 2 g per day for a total duration of 7 days. Serum immunog[obu[in levels, C3, C4 and CHS0 were normal However, using a method to screen for the functional activity of a[[ three pathways of complement (Wies[ab, Lund, Sweden), no activation via the MBL pathway could be detected (0%). A subsequent quantification of MBL pathway components revealed normal levels of MASP 2 but undetectab[e amounts of MBL (below 10 ng/m[, normal range: >500 ng/m[). Conclusion: Since the exact incidence and the possible relationship between meningococca[ disease and organ transplantation is not we[[ understood, we strongly encourage transplantation centers to report additional cases. The potential clinical usefu[ ness of screening SOT candidates for MBL deficiency in relation to infectious complications after transplantation remains to be determined.
Resumo:
MBLdeficiency is thought to be a risk factor for the development of viral infection, such as genital herpes and HSV-2 meningitis. However, there is limited data on the possible interaction between MBL and CMV, especially after organ transplantation. Between 2003 and 2005, we measured MBL levels in 16 kidney transplant recipients with high-risk CMV serostatus (donor positive/recipient negative, D+/R−). All patients receivedCMV prophylaxis of valganciclovir 450 mg/day for 3 months after transplantation. After stopping valganciclovir, CMV-DNA was measured in whole blood by real time PCR every 2 weeks for 3 months. CMV infections were diagnosed according to the recommendations of the AST. MBL levels were measured in stored pre-transplantation sera by an investigator blinded to the CMV complications. MBL levels below 500 ng/ml were considered as being functionally deficient. After a follow-up of at least 10 months, seven patients out of 16 developed CMV disease (three CMV syndrome, and four probable invasive disease, i.e. two colitis and two hepatitis), four patients developed asymptomatic CMV infection, and five patients never developed any sign of CMV replication. Peak CMV-DNA was higher in patients with CMV disease than in those with asymptomatic infection (4.64 versus 2.72 mean log copy CMV-DNA/106 leukocytes, p < 0.05). Overall, 9/16 patients (56%) had MBL deficiency: 5/7 (71%) of patients with CMV disease, 4/4 (100%) of patients with asymptomatic CMVinfection, and 0/5 (0%) of patients withoutCMVinfection (p < 0.005, between CMV infection/disease versus no infection or control blood donors). There were no significant differences in age, gender or immunosuppressive regimens between the groups. MBL deficiency may be a significant risk factor for the development of post-prophylaxisCMVinfection in D+/R−kidney recipients, suggesting a new role of innate immunity in the control of CMV infection after organ transplantation.
Resumo:
Background: Mannose binding lectin (MBL) is an innate humoral immune effector and MBL defi ciency has been suggested as a risk factor for the development of certain viral infections. However, there is no data about the possible association between MBL defi ciency and CMV, especially after organ transplantation. Methods: We measured MBL levels in 16 kidney transplant recipients with highrisk CMV serostatus (D+/R-) who received valganciclovir prophylaxis for 3 months (Study 1). In addition, MBL levels were retrospectively assayed in 55 recipients from a previous study of organ transplant recipients managed preemptively (Study 2). In Study 2, protracted CMV infection was associated with recipient CMV seronegativity, increasing age, and high viral load during the initial episode. In both studies, MBL defi ciency was diagnosed if MBL levels were <500 ng/ml. Results: In Study 1, after a follow-up of 12 months, 7 out of 16 patients developed CMV disease, 4 patients developed asymptomatic CMV infection, and 5 patients never developed any sign of CMV replication. Overall, 9/16 patients (56%) had MBL defi ciency: 5/7 (71%) of patients with CMV disease, 4/4 (100%) of patients with asymptomatic CMV infection, and 0/5 (0%) of patients without CMV infection (p=0.005, between CMV infection/disease versus no infection). Median MBL concentrations were higher in patients without CMV infection than in those with CMV infection (p<0.005). In Study 2, among 30 patients with CMV infection, 9/25 (36%) patients without MBL defi ciency had a protracted course, while 4/5 (80%) with MBL defi ciency did so (p=0.07). Conclusion: Data from two separate patient populations suggest that MBL defi ciency may be a signifi cant risk factor for late CMV disease/infection after prophylaxis, and protracted infection after preemptive treatment. This suggests a role for MBL in the control of CMV infection after organ transplantation.
Resumo:
OBJECTIVES: Mannan-binding lectin (MBL) acts as a pattern-recognition molecule directed against oligomannan, which is part of the cell wall of yeasts and various bacteria. We have previously shown an association between MBL deficiency and anti-Saccharomyces cerevisiae mannan antibody (ASCA) positivity. This study aims at evaluating whether MBL deficiency is associated with distinct Crohn's disease (CD) phenotypes. METHODS: Serum concentrations of MBL and ASCA were measured using ELISA (enzyme-linked immunosorbent assay) in 427 patients with CD, 70 with ulcerative colitis, and 76 healthy controls. CD phenotypes were grouped according to the Montreal Classification as follows: non-stricturing, non-penetrating (B1, n=182), stricturing (B2, n=113), penetrating (B3, n=67), and perianal disease (p, n=65). MBL was classified as deficient (<100 ng/ml), low (100-500 ng/ml), and normal (500 ng/ml). RESULTS: Mean MBL was lower in B2 and B3 CD patients (1,503+/-1,358 ng/ml) compared with that in B1 phenotypes (1,909+/-1,392 ng/ml, P=0.013). B2 and B3 patients more frequently had low or deficient MBL and ASCA positivity compared with B1 patients (P=0.004 and P<0.001). Mean MBL was lower in ASCA-positive CD patients (1,562+/-1,319 ng/ml) compared with that in ASCA-negative CD patients (1,871+/-1,320 ng/ml, P=0.038). In multivariate logistic regression modeling, low or deficient MBL was associated significantly with B1 (negative association), complicated disease (B2+B3), and ASCA. MBL levels did not correlate with disease duration. CONCLUSIONS: Low or deficient MBL serum levels are significantly associated with complicated (stricturing and penetrating) CD phenotypes but are negatively associated with the non-stricturing, non-penetrating group. Furthermore, CD patients with low or deficient MBL are significantly more often ASCA positive, possibly reflecting delayed clearance of oligomannan-containing microorganisms by the innate immune system in the absence of MBL.
Resumo:
While genetic polymorphisms play a paramount role in tuberculosis (TB), less is known about their contribution to the severity of diseases caused by other intracellular bacteria and fastidious microorganisms. We searched electronic databases for observational studies reporting on host factors and genetic predisposition to infections caused by intracellular fastidious bacteria published up to 30 May 2014. The contribution of genetic polymorphisms was documented for TB. This includes genetic defects in the mononuclear phagocyte/T helper cell type 1 (Th1) pathway contributing to disseminated TB disease in children and genome-wide linkage analysis (GWAS) in reactivated pulmonary TB in adults. Similarly, experimental studies supported the role of host genetic factors in the clinical presentation of illnesses resulting from other fastidious intracellular bacteria. These include IL-6 -174G/C or low mannose-binding (MBL) polymorphisms, which are incriminated in chronic pulmonary conditions triggered by C. pneumoniae, type 2-like cytokine secretion polymorphisms, which are correlated with various clinical patterns of M. pneumoniae infections, and genetic variation in the NOD2 gene, which is an indicator of tubal pathology resulting from Chamydia trachomatis infections. Monocyte/macrophage migration and T lymphocyte recruitment defects are corroborated to ineffective granuloma formation observed among patients with chronic Q fever. Similar genetic polymorphisms have also been suggested for infections caused by T. whipplei although not confirmed yet. In conclusion, this review supports the paramount role of genetic factors in clinical presentations and severity of infections caused by intracellular fastidious bacteria. Genetic predisposition should be further explored through such as exome sequencing.
Resumo:
Low molecular weight dextran sulfate (DXS) has been reported to inhibit the classical, alternative pathway as well as the mannan-binding lectin pathway of the complement system. Furthermore, it acts as an endothelial cell protectant inhibiting complement-mediated endothelial cell damage. Endothelial cells are covered with a layer of heparan sulfate (HS), which is rapidly released under conditions of inflammation and tissue injury. Soluble HS induces maturation of dendritic cells (DC) via TLR4. In this study, we show the inhibitory effect of DXS on human DC maturation. DXS significantly prevents phenotypic maturation of monocyte-derived DC and peripheral myeloid DC by inhibiting the up-regulation of CD40, CD80, CD83, CD86, ICAM-1, and HLA-DR and down-regulates DC-SIGN in response to HS or exogenous TLR ligands. DXS also inhibits the functional maturation of DC as demonstrated by reduced T cell proliferation, and strongly impairs secretion of the proinflammatory mediators IL-1beta, IL-6, IL-12p70, and TNF-alpha. Exposure to DXS leads to a reduced production of the complement component C1q and a decreased phagocytic activity, whereas C3 secretion is increased. Moreover, DXS was found to inhibit phosphorylation of IkappaB-alpha and activation of NF-kappaB. These findings suggest that DXS prevents TLR-induced maturation of human DC and may therefore be a useful reagent to impede the link between innate and adaptive immunity.
Resumo:
BACKGROUND AND AIMS: Mannan-binding lectin (MBL) and ficolins are microbial pattern recognition molecules that activate the lectin pathway of complement. We previously reported the association of MBL deficiency with anti-Saccharomyces cerevisiae antibodies (ASCA) in patients with Crohn's disease (CD). However, ASCA are also frequently found in MBL-proficient CD patients. Here we addressed expression/function of ficolins and MBL-associated serine protease-2 (MASP-2) regarding potential association with ASCA. METHODS: ASCA titers and MBL, ficolin and MASP-2 concentrations were determined by ELISA in the serum of patients with CD, ulcerative colitis (UC), and in healthy controls. MASP-2 activity was determined by measuring complement C4b-fixation. Anti-MBL autoantibodies were detected by ELISA. RESULTS: In CD and UC patients, L-ficolin concentrations were significantly higher compared to healthy controls (p<0.001 and p=0.029). In contrast, H-ficolin concentrations were slightly reduced in CD and UC compared to healthy controls (p=0.037 for UC vs. hc). CD patients with high ASCA titers had significantly lower H-ficolin concentrations compared to ASCA-low/negative CD patients (p=0.009). However, MASP-2 activity was not different in ASCA-negative and ASCA-positive CD patients upon both, ficolin- or MBL-mediated MASP-2 activation. Finally, anti-MBL autoantibodies were not over-represented in MBL-proficient ASCA-positive CD patients. CONCLUSIONS: Our results suggest that low expression of H-ficolin may promote elevated ASCA titers in the ASCA-positive subgroup of CD patients. However, unlike MBL deficiency, we found no evidence for low expression of serum ficolins or reduced MASP-2 activity that may predispose to ASCA development.
Resumo:
The relationship between the binding of Vicia villosa (VV) lectin and the expression of cytolytic function in T lymphoblasts has been investigated using flow cytofluorometric techniques. Spleen cells activated in vitro in 5-day mixed leukocyte cultures (MLC) were incubated sequentially with VV, rabbit anti-V antiserum, and fluoresceinated sheep anti-rabbit IgG. When these stained MLC cells were passed on a flow cytometer gated to exclude nonviable cells and small lymphocytes, a single heterogeneous peak of fluorescence was seen, as compared to control MLC cells that had not been incubated with VV. Fluorescence of lymphoblasts was dependent upon lectin dose and was eliminated when staining was performed in the presence of N-acetyl-D-galactosamine, the appropriate competitive sugar for VV. T cell blast populations activated against H-2, Mls, or parasite antigens all had comparable levels of fluorescence after staining with VV, although the cytolytic activity of these cells varied widely. Furthermore, when MLC lymphoblasts binding large or small amounts of VV were sorted on the basis of their relative fluorescence intensity and tested for cytolytic function, no appreciable difference in activity between the 2 populations was observed. These results are inconsistent with the hypothesis that VV binds selectively to cytolytic T lymphocytes.
Resumo:
Aggregating cell cultures prepared from fetal rat telencephalon express the two subunits [cerebellar soluble lectins (CSL) 1 and 2] of a soluble, mannose-specific endogenous lectin (CSL) in a development-dependent manner. Increased CSL synthesis was found at an early postmitotic stage as well as during the period of maximal myelination. Repetitive treatment of early cultures with epidermal growth factor (EGF, 3nM) caused a great stimulation of CSL biosynthesis. Immunocytochemical studies revealed particularly intense CSL-specific staining in small, EGF-responsive cells, presumably glial cells. Large quantities of CSL-immunoreactive material were found also in the extracellular space and on the external side of the plasma membrane, indicating abundant release of CSL. The present findings suggest that EGF or EGF-related factors in the brain are able to regulate the expression of an endogenous lectin, affecting brain ontogeny.
Resumo:
The biosynthesis of fusion-competent envelope glycoproteins (GPs) is a crucial step in productive viral infection. In this issue, Klaus et al. (2013) identify the cargo receptor endoplasmic reticulum (ER)-Golgi intermediate compartment 53 kDa protein (ERGIC-53) as a binding partner for viral GPs and a crucial cellular factor required for infectious virus production.
Resumo:
Alpha-dystroglycan (alpha-DG) is a cell-surface glycoprotein that acts as a receptor for both extracellular matrix proteins containing laminin-G domains and certain arenaviruses. Receptor binding is thought to be mediated by a posttranslational modification, and defective binding with laminin underlies a subclass of congenital muscular dystrophy. Using mass spectrometry- and nuclear magnetic resonance (NMR)-based structural analyses, we identified a phosphorylated O-mannosyl glycan on the mucin-like domain of recombinant alpha-DG, which was required for laminin binding. We demonstrated that patients with muscle-eye-brain disease and Fukuyama congenital muscular dystrophy, as well as mice with myodystrophy, commonly have defects in a postphosphoryl modification of this phosphorylated O-linked mannose, and that this modification is mediated by the like-acetylglucosaminyltransferase (LARGE) protein. These findings expand our understanding of the mechanisms that underlie congenital muscular dystrophy.
Resumo:
α-dystroglycan is a highly O-glycosylated extracellular matrix receptor that is required for anchoring of the basement membrane to the cell surface and for the entry of Old World arenaviruses into cells. Like-acetylglucosaminyltransferase (LARGE) is a key molecule that binds to the N-terminal domain of α-dystroglycan and attaches ligand-binding moieties to phosphorylated O-mannose on α-dystroglycan. Here we show that the LARGE modification required for laminin- and virus-binding occurs on specific Thr residues located at the extreme N terminus of the mucin-like domain of α-dystroglycan. Deletion and mutation analyses demonstrate that the ligand-binding activity of α-dystroglycan is conferred primarily by LARGE modification at Thr-317 and -319, within the highly conserved first 18 amino acids of the mucin-like domain. The importance of these paired residues in laminin-binding and clustering activity on myoblasts and in arenavirus cell entry is confirmed by mutational analysis with full-length dystroglycan. We further demonstrate that a sequence of five amino acids, Thr(317)ProThr(319)ProVal, contains phosphorylated O-glycosylation and, when modified by LARGE is sufficient for laminin-binding. Because the N-terminal region adjacent to the paired Thr residues is removed during posttranslational maturation of dystroglycan, our results demonstrate that the ligand-binding activity resides at the extreme N terminus of mature α-dystroglycan and is crucial for α-dystroglycan to coordinate the assembly of extracellular matrix proteins and to bind arenaviruses on the cell surface.
Resumo:
Murine cytolytic T cell lines have been analyzed for the expression of two surface glycoproteins called T145 and T130. T145, known to be expressed by activated cytolytic T cells, is also expressed by such lines, but T130, which has been described by a universal T cell marker, is not. Our results suggest a structural relationship between T145 and T130. Vicia villosa lectin, which binds selectively to T145 of activated T cells and which is cytotoxic for cytolytic T cell lines, has been used to select lectin-resistant mutants from these lines. Five independent lectin-resistant mutants have been obtained. All of them are cytolytically active, bind up to 100-fold less lectin than the parental lines, but still express T145 or a closely related glycoprotein.