14 resultados para malaria
em Université de Lausanne, Switzerland
Resumo:
The pharmacogenetics of antimalarial agents are poorly known, although the application of pharmacogenetics might be critical in optimizing treatment. This population pharmacokinetic-pharmacogenetic study aimed at assessing the effects of single nucleotide polymorphisms (SNPs) in cytochrome P450 isoenzyme genes (CYP, namely, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5) and the N-acetyltransferase 2 gene (NAT2) on the pharmacokinetics of artemisinin-based combination therapies in 150 Tanzanian patients treated with artemether-lumefantrine, 64 Cambodian patients treated with artesunate-mefloquine, and 61 Cambodian patients treated with dihydroartemisinin-piperaquine. The frequency of SNPs varied with the enzyme and the population. Higher frequencies of mutant alleles were found in Cambodians than Tanzanians for CYP2C9*3, CYP2D6*10 (100C → T), CYP3A5*3, NAT2*6, and NAT2*7. In contrast, higher frequencies of mutant alleles were found in Tanzanians for CYP2D6*17 (1023C → T and 2850C → T), CYP3A4*1B, NAT2*5, and NAT2*14. For 8 SNPs, no significant differences in frequencies were observed. In the genetic-based population pharmacokinetic analyses, none of the SNPs improved model fit. This suggests that pharmacogenetic data need not be included in appropriate first-line treatments with the current artemisinin derivatives and quinolines for uncomplicated malaria in specific populations. However, it cannot be ruled out that our results represent isolated findings, and therefore more studies in different populations, ideally with the same artemisinin-based combination therapies, are needed to evaluate the influence of pharmacogenetic factors on the clearance of antimalarials.
Resumo:
BackgroundThe great diversity of bat haemosporidians is being uncovered with the help of molecular tools. Yet most of these studies provide only snapshots in time of the parasites discovered. Polychromophilus murinus, a malaria-like blood parasite, specialised on temperate-zone bats is a species that is being `rediscovered¿. This study describes the infection dynamics over time and between host sex and age classes.MethodsFor three years we followed the members of three breeding colonies of Myotis daubentonii in Western Switzerland and screened them for the prevalence and parasitemia of P. murinus using both molecular tools and traditional microscopy. In order to identify more susceptible classes of hosts, we measured, sexed and aged all individuals. During one year, we additionally measured body temperature and haematocrit values.ResultsJuvenile bats demonstrated much higher parasitemia than any other age class sampled, suggesting that first exposure to the parasite is very early in life during which infections are also at their most intense. Moreover, in subadults there was a clear negative correlation between body condition and intensity of infection, whereas a weak positive correlation was observed in adults. Neither body temperature, nor haematocrit, two proxies used for pathology, could be linked to intensities of infection.ConclusionIf both weaker condition and younger age are associated with higher infection intensity, then the highest selection pressure exerted by P. murinus should be at the juvenile stage. Confusion over the identities and nomenclature of malarial-like parasites requires that molecular barcodes are coupled to accurate morphological descriptions.
Resumo:
A new strategy for the rapid identification of new malaria antigens based on protein structural motifs was previously described. We identified and evaluated the malaria vaccine potential of fragments of several malaria antigens containing α-helical coiled coil protein motifs. By taking advantage of the relatively short size of these structural fragments, we constructed different poly-epitopes in which 3 or 4 of these segments were joined together via a non-immunogenic linker. Only peptides that are targets of human antibodies with anti-parasite in vitro biological activities were incorporated. One of the constructs, P181, was well recognized by sera and peripheral blood mononuclear cells (PBMC) of adults living in malaria-endemic areas. Affinity purified antigen-specific human antibodies and sera from P181-immunized mice recognised native proteins on malaria-infected erythrocytes in both immunofluorescence and western blot assays. In addition, specific antibodies inhibited parasite development in an antibody dependent cellular inhibition (ADCI) assay. Naturally induced antigen-specific human antibodies were at high titers and associated with clinical protection from malaria in longitudinal follow-up studies in Senegal.
Resumo:
Repeated antimalarial treatment for febrile episodes and self-treatment are common in malaria-endemic areas. The intake of antimalarials prior to participating in an in vivo study may alter treatment outcome and affect the interpretation of both efficacy and safety outcomes. We report the findings from baseline plasma sampling of malaria patients prior to inclusion into an in vivo study in Tanzania and discuss the implications of residual concentrations of antimalarials in this setting. In an in vivo study conducted in a rural area of Tanzania in 2008, baseline plasma samples from patients reporting no antimalarial intake within the last 28 days were screened for the presence of 14 antimalarials (parent drugs or metabolites) using liquid chromatography-tandem mass spectrometry. Among the 148 patients enrolled, 110 (74.3%) had at least one antimalarial in their plasma: 80 (54.1%) had lumefantrine above the lower limit of calibration (LLC = 4 ng/mL), 7 (4.7%) desbutyl-lumefantrine (4 ng/mL), 77 (52.0%) sulfadoxine (0.5 ng/mL), 15 (10.1%) pyrimethamine (0.5 ng/mL), 16 (10.8%) quinine (2.5 ng/mL) and none chloroquine (2.5 ng/mL). The proportion of patients with detectable antimalarial drug levels prior to enrollment into the study is worrying. Indeed artemether-lumefantrine was supposed to be available only at government health facilities. Although sulfadoxine-pyrimethamine is only recommended for intermittent preventive treatment in pregnancy (IPTp), it was still widely used in public and private health facilities and sold in drug shops. Self-reporting of previous drug intake is unreliable and thus screening for the presence of antimalarial drug levels should be considered in future in vivo studies to allow for accurate assessment of treatment outcome. Furthermore, persisting sub-therapeutic drug levels of antimalarials in a population could promote the spread of drug resistance. The knowledge on drug pressure in a given population is important to monitor standard treatment policy implementation.
Resumo:
In disease ecology, there is growing evidence that environmental quality interacts with parasite and host to determine host susceptibility to an infection. Most studies of malaria parasites have focused on the infection costs incurred by the hosts, and few have investigated the costs on mosquito vectors. The interplay between the environment, the vector and the parasite has therefore mostly been ignored and often relied on unnatural or allopatric Plasmodium/vector associations. Here, we investigated the effects of natural avian malaria infection on both fecundity and survival of field-caught female Culex pipiens mosquitoes, individually maintained in laboratory conditions. We manipulated environmental quality by providing mosquitoes with different concentrations of glucose-feeding solution prior to submitting them to a starvation challenge. We used molecular-based methods to assess mosquitoes' infection status. We found that mosquitoes infected with Plasmodium had lower starvation resistance than uninfected ones only under low nutritional conditions. The effect of nutritional stress varied with time, with the difference of starvation resistance between optimally and suboptimally fed mosquitoes increasing from spring to summer, as shown by a significant interaction between diet treatment and months of capture. Infected and uninfected mosquitoes had similar clutch size, indicating no effect of infection on fecundity. Overall, this study suggests that avian malaria vectors may suffer Plasmodium infection costs in their natural habitat, under certain environmental conditions. This may have major implications for disease transmission in the wild.
Resumo:
Differences in parasite transmission intensity influence the process of acquisition of host immunity to Plasmodium falciparum malaria and ultimately, the rate of malaria related morbidity and mortality. Potential vaccines being designed to complement current intervention efforts therefore need to be evaluated against different malaria endemicity backgrounds. The associations between antibody responses to the chimeric merozoite surface protein 1 block 2 hybrid (MSP1 hybrid), glutamate-rich protein region 2 (GLURP R2) and the peptide AS202.11, and the risk of malaria were assessed in children living in malaria hyperendemic (Burkina Faso, n = 354) and hypo-endemic (Ghana, n = 209) areas. Using the same reagent lots and standardized protocols for both study sites, immunoglobulin (Ig) M, IgG and IgG sub-class levels to each antigen were measured by ELISA in plasma from the children (aged 6-72 months). Associations between antibody levels and risk of malaria were assessed using Cox regression models adjusting for covariates. There was a significant association between GLURP R2 IgG3 and reduced risk of malaria after adjusting age of children in both the Burkinabe (hazard ratio 0.82; 95 % CI 0.74-0.91, p < 0.0001) and the Ghanaian (HR 0.48; 95 % CI 0.25-0.91, p = 0.02) cohorts. MSP1 hybrid IgM was associated (HR 0.85; 95 % CI 0.73-0.98, p = 0.02) with reduced risk of malaria in Burkina Faso cohort while IgG against AS202.11 in the Ghanaian children was associated with increased risk of malaria (HR 1.29; 95 % CI 1.01-1.65, p = 0.04). These findings support further development of GLURP R2 and MSP1 block 2 hybrid, perhaps as a fusion vaccine antigen targeting malaria blood stage that can be deployed in areas of varying transmission intensity.
Resumo:
In 2008, several publications have highlighted the role of climate change and globalization on the epidemiology of infectious diseases. Studies have shown the extension towards Europe of diseases such as Crimea-Congo fever (Kosovo, Turkey and Bulgaria), leismaniosis (Cyprus) and chikungunya virus infection (Italy). The article also contains comments on Plasmodium knowlesi, a newly identified cause of severe malaria in humans, as well as an update on human transmission of the H5NI avian influenza virus. It also mentions new data on Bell's palsy as well as two vaccines (varicella-zoster and pneumococcus), and provides a list of recent guidelines for the treatment of common infectious diseases.
Resumo:
Background: Plasmodium falciparum(P. falciparum) merozoite surfaceprotein 2 (MSP-2) is one of bloodstage proteins that are associated withprotection from malaria. MSP-2 consistsof a highly polymorphic centralrepeat region flanked by a dimorphicregion that defines the two allelicfamilies, 3D7 and FC27; N- and Cterminalregions are conserved domains.Long synthetic peptides (LSP)representing the two allelic familiesof MSP-2 and constant regions arerecognized by sera from donors livingin endemic areas; and specific antibodies(Abs) are associated with protectionand active in antibody dependentcellular inhibition (ADCI) in vitro.However, the fine specificity ofAb response to the two allelic familiesof MSP-2 is unknown. Methods: Peptidesrepresenting dimorphic regionof 3D7 and FC27 families and theirC-terminal (common fragment to thetwo families) termed 3D7-D (88 aa),FC27-D (48 aa) and C (40 aa) respectivelywere synthesized. Overlapping20 mer peptides covering dimorphicand constant regions of two familieswere also synthesized for epitopemapping. Human sera were obtainedfrom donors living in malaria endemicareas. SpecificDand CregionsAbs were purified from single or poolhuman sera. Sera from mice were obtainedafter immunization with thetwo families LSP mixture in three differentadjuvants: alhydrogel (Alum),Glucopyranosyl Lipid Adjuvant-Stableoil-in-water Emulsion (GLA-SE)and Virosome. For ADCI, P. falciparum(strain 3D7) parasite wasmaintained in culture at 0.5% parasitemiaand 4% hematocrit in air tightbox at love oxygen (2%) and 37 ºC.Results: We identified several epitopesfrom the dimorphic and constantregions of both families of MSP-2, inmice and humans (adults and children).In human, most recognizedepitopes were the same in differentendemic regions for each domain ofthe two families of MSP-2. In mice,the differential recognition of epitopewas depending on the strain of mouseand interestingly on the adjuvantused. GLA-SE and alum as adjuvantswere more often associated with therecognition of multiple epitopes thanvirosomes. Epitope-specific Abs recognizednative merozoites of P.falciparum and were active in ADCIto block development of parasite.Conclusion: The delineation of a limitednumber of epitopes could be exploitedto develop MSP-2 vaccinesactive on both allelic families ofMSP-2.
Resumo:
We have used the cellular slime mold, Dictyostelium discoideum (Dd), to express the Plasmodium falciparum circumsporozoite protein (CS), a potential component of a subunit vaccine against malaria. This was accomplished via an expression vector based on the discoidin I-encoding gene promoter, in which we linked a sequence coding for a Dd leader peptide to the almost complete CS coding region (pEDII-CS). CS production at both the mRNA and protein levels is induced by starving cells in a simple phosphate buffer. Variation in pH or cell density does not seem to influence CS synthesis. CS-producing cells can be grown either on their normal substrate, bacteria, or on a semi-synthetic media, without affecting CS accumulation level. The CS produced in Dd seems similar to the natural parasite protein as judged by its size and epitope recognition by a panel of monoclonal antibodies. We constructed a second expression vector in which the CS is under the control of a Dd ras promoter. CS accumulation can then be induced by external addition of cAMP. Such a tightly regulated promoter may allow expression of proteins potentially toxic to the cell. Thus, Dd could be a useful eukaryotic system to produce recombinant proteins, in particular from human or animal parasites like P. falciparum.
Resumo:
Point-of-care (POC) tests offer potentially substantial benefits for the management of infectious diseases, mainly by shortening the time to result and by making the test available at the bedside or at remote care centres. Commercial POC tests are already widely available for the diagnosis of bacterial and viral infections and for parasitic diseases, including malaria. Infectious diseases specialists and clinical microbiologists should be aware of the indications and limitations of each rapid test, so that they can use them appropriately and correctly interpret their results. The clinical applications and performance of the most relevant and commonly used POC tests are reviewed. Some of these tests exhibit insufficient sensitivity, and should therefore be coupled to confirmatory tests when the results are negative (e.g. Streptococcus pyogenes rapid antigen detection test), whereas the results of others need to be confirmed when positive (e.g. malaria). New molecular-based tests exhibit better sensitivity and specificity than former immunochromatographic assays (e.g. Streptococcus agalactiae detection). In the coming years, further evolution of POC tests may lead to new diagnostic approaches, such as panel testing, targeting not just a single pathogen, but all possible agents suspected in a specific clinical setting. To reach this goal, the development of serology-based and/or molecular-based microarrays/multiplexed tests will be needed. The availability of modern technology and new microfluidic devices will provide clinical microbiologists with the opportunity to be back at the bedside, proposing a large variety of POC tests that will allow quicker diagnosis and improved patient care.
Resumo:
It is widely accepted that antibody responses against the human parasitic pathogen Plasmodium falciparum protect the host from the rigors of severe malaria and death. However, there is a continuing need for the development of in vitro correlate assays of immune protection. To this end, the capacity of human monoclonal and polyclonal antibodies in eliciting phagocytosis and parasite growth inhibition via Fcγ receptor-dependent mechanisms was explored. In examining the extent to which sequence diversity in merozoite surface protein 2 (MSP2) results in the evasion of antibody responses, an unexpectedly high level of heterologous function was measured for allele-specific human antibodies. The dependence on Fcγ receptors for opsonic phagocytosis and monocyte-mediated antibody-dependent parasite inhibition was demonstrated by the mutation of the Fc domain of monoclonal antibodies against both MSP2 and a novel vaccine candidate, peptide 27 from the gene PFF0165c. The described flow cytometry-based functional assays are expected to be useful for assessing immunity in naturally infected and vaccinated individuals and for prioritizing among blood-stage antigens for inclusion in blood-stage vaccines.
Resumo:
BACKGROUND: Practice guidelines for examining febrile patients presenting upon returning from the tropics were developed to assist primary care physicians in decision making. Because of the low level of evidence available in this field, there was a need to validate them and assess their feasibility in the context they have been designed for. OBJECTIVES: The objectives of the study were to (1) evaluate physicians' adherence to recommendations; (2) investigate reasons for non-adherence; and (3) ensure good clinical outcome of patients, the ultimate goal being to improve the quality of the guidelines, in particular to tailor them for the needs of the target audience and population. METHODS: Physicians consulting the guidelines on the Internet (www.fevertravel.ch) were invited to participate in the study. Navigation through the decision chart was automatically recorded, including diagnostic tests performed, initial and final diagnoses, and clinical outcomes. The reasons for non-adherence were investigated and qualitative feedback was collected. RESULTS: A total of 539 physician/patient pairs were included in this study. Full adherence to guidelines was observed in 29% of the cases. Figure-specific adherence rate was 54.8%. The main reasons for non-adherence were as follows: no repetition of malaria tests (111/352) and no presumptive antibiotic treatment for febrile diarrhea (64/153) or abdominal pain without leukocytosis (46/101). Overall, 20% of diversions from guidelines were considered reasonable because there was an alternative presumptive diagnosis or the symptoms were mild, which means that the corrected adherence rate per case was 40.6% and corrected adherence per figure was 61.7%. No death was recorded and all complications could be attributed to the underlying illness rather than to adherence to guidelines. CONCLUSIONS: These guidelines proved to be feasible, useful, and leading to good clinical outcomes. Almost one third of physicians strictly adhered to the guidelines. Other physicians used the guidelines not to forget specific diagnoses but finally diverged from the proposed attitudes. These diversions should be scrutinized for further refinement of the guidelines to better fit to physician and patient needs.
Resumo:
Bioterrorism literally means using microorganisms or infected samples to cause terror and panic in populations. Bioterrorism had already started 14 centuries before Christ, when the Hittites sent infected rams to their enemies. However, apart from some rare well-documented events, it is often very difficult for historians and microbiologists to differentiate natural epidemics from alleged biological attacks, because: (i) little information is available for times before the advent of modern microbiology; (ii) truth may be manipulated for political reasons, especially for a hot topic such as a biological attack; and (iii) the passage of time may also have distorted the reality of the past. Nevertheless, we have tried to provide to clinical microbiologists an overview of some likely biological warfare that occurred before the 18th century and that included the intentional spread of epidemic diseases such as tularaemia, plague, malaria, smallpox, yellow fever, and leprosy. We also summarize the main events that occurred during the modern microbiology era, from World War I to the recent 'anthrax letters' that followed the World Trade Center attack of September 2001. Again, the political polemic surrounding the use of infectious agents as a weapon may distort the truth. This is nicely exemplified by the Sverdlovsk accident, which was initially attributed by the authorities to a natural foodborne outbreak, and was officially recognized as having a military cause only 13 years later.
Resumo:
BACKGROUND: Plasmodium falciparum MSP2 is a blood stage protein that is associated with protection against malaria. It was shown that the MSP2 dimorphic (D) and constant (C) regions were well recognized by immune human antibodies, and were characterized by major conserved epitopes in different endemic areas and age groups. These Abs recognized merozoite-derived proteins in WB and IFA. Here, the goal was to determine in mice the immunogenicity of the two allelic MSP2 D and C domains formulated with different adjuvants, for their possible use in future clinical studies. METHOD: Female A/J, C3H, and ICR mice were immunized subcutaneously 3 times at 3-week interval with a mixture of allelic and conserved MSP2 long synthetic peptides formulated with different adjuvants. One week after the third injection, sera from each group were obtained and stored at -20°C for subsequent testing. RESULTS: Both domains of the two MSP2 families are immunogenic and the fine specificity and intensity of the Ab responses are dependent on mouse strains and adjuvants. The major epitopes were restricted to the 20-mer peptide sequences comprising the last 8aa of D and first 12aa of C of the two allelic families and the first 20aa of the C region, this for most strains and adjuvants. Strong immune responses were associated with GLA-SE adjuvant and its combination with other TLR agonists (CpG or GDQ) compared to alhydrogel and Montanide. Further, the elicited Abs were also capable of recognizing Plasmodium-derived MSP2 and inhibiting parasite growth in ADCI. CONCLUSION: The data provide a valuable opportunity to evaluate in mice different adjuvant and antigen formulations of a candidate vaccine containing both MSP2 D and C fragments. The formulations with GLA-SE seem to be a promising option to be compared with the alhydrogel one in human clinical trials.