10 resultados para lung disease
em Université de Lausanne, Switzerland
Resumo:
Dendritic cells (DCs) are leukocytes specialised in the uptake, processing, and presentation of antigen and fundamental in regulating both innate and adaptive immune functions. They are mainly localised at the interface between body surfaces and the environment, continuously scrutinising incoming antigen for the potential threat it may represent to the organism. In the respiratory tract, DCs constitute a tightly enmeshed network, with the most prominent populations localised in the epithelium of the conducting airways and lung parenchyma. Their unique localisation enables them to continuously assess inhaled antigen, either inducing tolerance to inoffensive substances, or initiating immunity against a potentially harmful pathogen. This immunological homeostasis requires stringent control mechanisms to protect the vital and fragile gaseous exchange barrier from unrestrained and damaging inflammation, or an exaggerated immune response to an innocuous allergen, such as in allergic asthma. During DC activation, there is upregulation of co-stimulatory molecules and maturation markers, enabling DC to activate naïve T cells. This activation is accompanied by chemokine and cytokine release that not only serves to amplify innate immune response, but also determines the type of effector T cell population generated. An increasing body of recent literature provides evidence that different DC subpopulations, such as myeloid DC (mDC) and plasmacytoid DC (pDC) in the lungs occupy a key position at the crossroads between tolerance and immunity. This review aims to provide the clinician and researcher with a summary of the latest insights into DC-mediated pulmonary immune regulation and its relevance for developing novel therapeutic strategies for various disease conditions such as infection, asthma, COPD, and fibrotic lung disease.
Resumo:
Increasingly the development of novel therapeutic strategies is taking into consideration the contribution of the intestinal microbiota to health and disease. Dysbiosis of the microbial communities colonizing the human intestinal tract has been described for a variety of chronic diseases, such as inflammatory bowel disease, obesity and asthma. In particular, reduction of several so-called probiotic species including Lactobacilli and Bifidobacteria that are generally considered to be beneficial, as well as an outgrowth of potentially pathogenic bacteria is often reported. Thus a tempting therapeutic approach is to shape the constituents of the microbiota in an attempt to restore the microbial balance towards the growth of 'health-promoting' bacterial species. A twist to this scenario is the recent discovery that the respiratory tract also harbors a microbiota under steady-state conditions. Investigators have shown that the microbial composition of the airway flora is different between healthy lungs and those with chronic lung diseases, such as asthma, chronic obstructive pulmonary disease as well as cystic fibrosis. This is an emerging field, and thus far there is very limited data showing a direct contribution of the airway microbiota to the onset and progression of disease. However, should future studies provide such evidence, the airway microbiota might soon join the intestinal microbiota as a target for therapeutic intervention. In this review, we highlight the major advances that have been made describing the microbiota in chronic lung disease and discuss current and future approaches concerning manipulation of the microbiota for the treatment and prevention of disease.
Resumo:
ABSTRACT: BACKGROUND: Recent data indicate a slight decrease in the prevalence of smoking in Switzerland, but little is known regarding the intention and difficulty to quit smoking among current smokers. Hence, we aimed to quantify the difficulty and intention to quit smoking among current smokers in Switzerland. METHODS: Cross-sectional study including 607 female and 658 male smokers. Difficulty, intention and motivation to quit smoking were assessed by questionnaire. RESULTS: 90% of women and 85% of men reported being "very difficult" or "difficult" to quit smoking. Almost three quarters of smokers (73% of women and 71% of men) intended to quit; however, less than 20% of them were in the preparation stage and 40% were in the precontemplation stage. On multivariate analysis, difficulty to quit was lower among men (Odds ratio and 95% [confidence interval]: 0.51 [0.35-0.74]) and increased with nicotine dependence and number of previous quitting attempts (OR=3.14 [1.75-5.63] for 6+ attempts compared to none). Intention to quit decreased with increasing age (OR=0.48 [0.30-0.75] for [greater than or equal to]65 years compared to <45 years) and increased with nicotine dependence, the number of previous quitting attempts (OR=4.35 [2.76-6.83] for 6+ attempts compared to none) and among non-cigarette smokers (OR=0.51 [0.28-0.92]). Motivation to quit was inversely associated with nicotine dependence and positively associated with the number of previous quitting attempts and personal history of lung disease. CONCLUSION: Over two thirds of Swiss smokers want to quit. However, only a small fraction wishes to do so in the short term. Nicotine dependence, previous attempts to quit or previous history of lung disease are independently associated with difficulty and intention to quit.
Resumo:
Idiopathic interstitial pneumonias represent approximately 30% of all interstitial lung diseases. The new classification of idiopathic interstitial pneumonias published in 2013 distinguishes 6 major entities, including chronic fibrosing forms (idiopathic pulmonary fibrosis and nonspecific interstitial pneumonia), acute/subacute forms (cryptogenic organizing pneumonia and acute interstitial pneumonia) and smoking-related disorders (respiratory bronchiolitis interstitial lung disease and desquamative interstitial pneumonia). Pleuroparenchymal fibroelastosis is individualized as a new rare clinco-pathologic entity. For cases not fitting any specific clinic- pathological category, a pragmatic classification based on disease behavior is proposed.
Resumo:
Studies in cystic fibrosis patients and mice overexpressing the epithelial Na(+) channel beta-subunit (betaENaC-Tg) suggest that raised airway Na(+) transport and airway surface liquid (ASL) depletion are central to the pathogenesis of cystic fibrosis lung disease. However, patients or mice with Liddle gain-of-function betaENaC mutations exhibit hypertension but no lung disease. To investigate this apparent paradox, we compared the airway phenotype (nasal versus tracheal) of Liddle with CFTR-null, betaENaC-Tg, and double mutant mice. In mouse nasal epithelium, the region that functionally mimics human airways, high levels of CFTR expression inhibited Liddle epithelial Nat channel (ENaC) hyperfunction. Conversely, in mouse trachea, low levels of CFTR failed to suppress Liddle ENaC hyperfunction. Indeed, Na(+) transport measured in Ussing chambers ("flooded" conditions) was raised in both Liddle and betaENaC-Tg mice. Because enhanced Na(+) transport did not correlate with lung disease in these mutant mice, measurements in tracheal cultures under physiologic "thin film" conditions and in vivo were performed. Regulation of ASL volume and ENaC-mediated Na(+) absorption were intact in Liddle but defective in betaENaC-Tg mice. We conclude that the capacity to regulate Na(+) transport and ASL volume, not absolute Na(+) transport rates in Ussing chambers, is the key physiologic function protecting airways from dehydration-induced lung disease.
Resumo:
since 1999 data from pulmonary hypertension (PH) patients from all PH centres in Switzerland were prospectively collected. We analyse the epidemiological aspects of these data. PH was defined as a mean pulmonary artery pressure of >25 mm Hg at rest or >30 mm Hg during exercise. Patients with pulmonary arterial hypertension (PAH), PH associated with lung diseases, PH due to chronic thrombotic and/or embolic disease (CTEPH), or PH due to miscellaneous disorders were registered. Data from adult patients included between January 1999 and December 2004 were analysed. 250 patients were registered (age 58 +/- 16 years, 104 (41%) males). 152 patients (61%) had PAH, 73 (29%) had CTEPH and 18 (7%) had PH associated with lung disease. Patients <50 years (32%) were more likely to have PAH than patients >50 years (76% vs. 53%, p <0.005). Twenty-four patients (10%) were lost to followup, 58 patients (26%) died and 150 (66%) survived without transplantation or thrombendarterectomy. Survivors differed from patients who died in the baseline six-minute walking distance (400 m [300-459] vs. 273 m [174-415]), the functional impairment (NYHA class III/IV 86% vs. 98%), mixed venous saturation (63% [57-68] vs. 56% [50-61]) and right atrial pressure (7 mm Hg [4-11] vs. 11 mm Hg [4-18]). PH is a disease affecting adults of all ages. The management of these patients in specialised centres guarantees a high quality of care. Analysis of the registry data could be an instrument for quality control and might help identify weak points in assessment and treatment of these patients.
Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis.
Resumo:
RATIONALE: Lung injury leads to pulmonary inflammation and fibrosis through myeloid differentiation primary response gene 88 (MyD88) and the IL-1 receptor 1 (IL-1R1) signaling pathway. The molecular mechanisms by which lung injury triggers IL-1beta production, inflammation, and fibrosis remain poorly understood. OBJECTIVES: To determine if lung injury depends on the NALP3 inflammasome and if bleomycin (BLM)-induced lung injury triggers local production of uric acid, thereby activating the NALP3 inflammasome in the lung. Methods: Inflammation upon BLM administration was evaluated in vivo in inflammasome-deficient mice. Pulmonary uric acid accumulation, inflammation, and fibrosis were analyzed in mice treated with the inhibitor of uric acid synthesis or with uricase, which degrades uric acid. MEASUREMENTS AND MAIN RESULTS: Lung injury depends on the NALP3 inflammasome, which is triggered by uric acid locally produced in the lung upon BLM-induced DNA damage and degradation. Reduction of uric acid levels using the inhibitor of uric acid synthesis allopurinol or uricase leads to a decrease in BLM-induced IL-1beta production, lung inflammation, repair, and fibrosis. Local administration of exogenous uric acid crystals recapitulates lung inflammation and repair, which depend on the NALP3 inflammasome, MyD88, and IL-1R1 pathways and Toll-like receptor (TLR)2 and TLR4 for optimal inflammation but are independent of the IL-18 receptor. CONCLUSIONS: Uric acid released from injured cells constitutes a major endogenous danger signal that activates the NALP3 inflammasome, leading to IL-1beta production. Reducing uric acid tissue levels represents a novel therapeutic approach to control IL-1beta production and chronic inflammatory lung pathology.
Resumo:
Lung transplantation has now been performed for more than 30 years in patients with end-stage chronic obstructive pulmonary disease (COPD). This disease is the major indication for lung transplantation, involving more than one third of the procedures worldwide. Although lung transplantation in COPD patients has clearly shown a positive impact on lung function, exercise capacity and quality of life, the survival benefit remains difficult to ascertain. Several methodological difficulties, particularly the absence of classical randomised studies, make the analysis especially challenging. There is however indirect but convincing evidence that lung transplantation can, when appropriate selection criteria are applied, provide not only an active post-transplant lifestyle but also a survival benefit for patients with COPD.
Resumo:
Patients affected with intra-thoracic recurrences of primary or secondary lung malignancies after a first course of definitive radiotherapy have limited therapeutic options, and they are often treated with a palliative intent. Re-irradiation with stereotactic ablative radiotherapy (SABR) represents an appealing approach, due to the optimized dose distribution that allows for high-dose delivery with better sparing of organs at risk. This strategy has the goal of long-term control and even cure. Aim of this review is to report and discuss published data on re-irradiation with SABR in terms of efficacy and toxicity. Results indicate that thoracic re-irradiation may offer satisfactory disease control, however the data on outcome and toxicity are derived from low quality retrospective studies, and results should be cautiously interpreted. As SABR may be associated with serious toxicity, attention should be paid for an accurate patients' selection.