19 resultados para litter
em Université de Lausanne, Switzerland
Resumo:
Iteroparous organisms maximize their overall fitness by optimizing their reproductive effort over multiple reproductive events. Hence, changes in reproductive effort are expected to have both short- and long-term consequences on parents and their offspring. In laboratory rodents, manipulation of reproductive efforts during lactation has however revealed few short-term reproductive adjustments, suggesting that female laboratory rodents express maximal rather than optimal levels of reproductive investment as observed in semelparous organisms. Using a litter size manipulation (LSM) experiment in a small wild-derived rodent (the common vole; Microtus arvalis), we show that females altered their reproductive efforts in response to LSM, with females having higher metabolic rates and showing alternative body mass dynamics when rearing an enlarged rather than reduced litter. Those differences in female reproductive effort were nonetheless insufficient to fully match their pups' energy demand, pups being lighter at weaning in enlarged litters. Interestingly, female reproductive effort changes had long-term consequences, with females that had previously reared an enlarged litter being lighter at the birth of their subsequent litter and producing lower quality pups. We discuss the significance of using wild-derived animals in studies of reproductive effort optimization.
Resumo:
Crocidura russula is restricted to the vicinity of human dwellings in the northern parts of its range and in the mountain regions of Central and Western Europe. In order to better understand the causes of such a distribution, a population was studied in a rural mountain habitat (750 m above sea level), where the species was found almost exclusively in the neighbourhood of human dwellings. The study was conducted on a 2000 m2 area, over a period of 20 months, by live-trapping and radioactive tracking. The abundance, the local distribution and the behaviour of the shrews vary greatly throughout the year. In summer, they chiefly inhabit areas with a dense herbaceous cover or shruby vegetation; they are mainly active at ground level, in the litter. In autumn, changes in the environmental conditions (lowering of temperatures, subsidence of the herbaceous vegetation, presence of snow) create important energetic problems. At that time, the shrews gradually become more active around and inside compost-heaps and buildings. The microclimate of such environments is mild and prey are numerous. The winter population is reduced (reaching its lowest level in late winter) and consists only of shrews frequenting these sites. The observed spatial distribution is the result of the energetic dependence of the wintering shrews on human dwellings and their surroundings. This dependence is probably related to the physiological characteristics of the species. In the prospected region, Crocidura russula is the only shrew which regularly takes advantage of man-made habitats; the maintenance of the species in the rural mountain enviroment is probably favoured by the social organization of the populations in winter. The other native Soricids are observed only occasionaly int he neighbourhood of human dwellings.
Resumo:
BACKGROUND AND OBJECTIVE: To assess if gestational factors affect the resistance of C57BL/6 mice to L major infection, this study determined the levels of IL-4 and IFN-gamma in popliteal lymph node cells of pregnant C57BL/6 mice infected with L. major at 16 hours, 5 days-, 10 days- and 15 days- post plug by PCR, ELISA and BIOASSAY. DESIGN/SETTING: Experimental. RESULTS: Infected pregnant C57BL/6 mice developed larger cutaneous footpad lesions compared with non-pregnant C57BL/6 mice (that showed signs of resolution 7-10 weeks after infection). But, the lesions in infected pregnant C57BL/6 mice and infected non-pregnant C57BL/6 mice were not as large as in susceptible BALB/c mice. The mean litter weight was also reduced in pregnant infected C57BL/6 mice particularly in the groups infected at later stages of pregnancy (day 10- and day 15-post plug). The levels of both IL-4 and IFN-gamma increased with gestation in pregnant infected C57BL/6 mice compared with pregnant non-infected group, while only IL-4 was raised in pregnant infected mice compared with infected non pregnant mice. CONCLUSIONS: It may be concluded that increased IL-4 in pregnant infected C57BL/6 mice caused the transient susceptibility to L major infection while reduced litter weight was associated with increased IFN-gamma. These effects were pronounced in C57BI/6 mice infected with L major in late pregnancy.
Resumo:
An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the acidic conditions in these types of soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. In addition, a concomitant flux of carbonate formed in wood tissues contributes to the carbonate flux and is identified as a direct consequence of wood feeding by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter, and an oxalate pool is formed on the forest ground. Then, wood rotting agents (mainly termites, saprophytic fungi, and bacteria) release significant amounts of oxalate crystals from decaying plant tissues. In addition, some of these agents are themselves producers of oxalate (e.g. fungi). Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can then start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate pathway. The solution is pumped through the roots, leading to carbonate precipitation. The main pools of carbon are clearly identified as the organic matter (the tree and its organic products), the oxalate crystals, and the various carbonate features. A functional model based on field observations and diagenetic investigations with δ13C signatures of the various compartments involved in the local carbon cycle is proposed. It suggests that the iroko ecosystem can act as a long-term carbon sink, as long as the calcium source is related to non-carbonate rocks. Consequently, this carbon sink, driven by the oxalate carbonate pathway around an iroko tree, constitutes a true carbon trapping ecosystem as defined by ecological theory.
Resumo:
To determine if gestational factors affect the severity of L. major infection, this study assessed the levels of IL-4 mRNA and IFN-gamma mRNA in popliteal lymph node cells of pregnant C57BL/6 mice mated at 5 hours, 16 hours and 15 days post L. major infection using PCR. Infected pregnant C57BL/6 mice developed larger cutaneous footpad lesions compared with non-pregnant infected C57BL/6 mice. The resolution of footpad lesions commenced after 8th week in C57BL/6 mice mated at 16 hrs post L. major infection but 12 weeks in C57BL/6 mice mated at 5 hrs and 15 days post L. major infection. C57BL/6 mice that were infected 20 days post partum resolved L. major infection effectively. But, the lesions in infected pregnant C57BL/6 mice and infected non-pregnant C57BL/6 mice were not as large as in susceptible BALB/c mice. The mean litter weights were similar in pregnant infected C57BL/6 mice mated at different stages of L. major infection but were slightly lower than weights of litters from pregnant uninfected C57BL/6 mice. In 5 days infected pregnant C57BL/6 mice, the levels of IFN-gamma were raised compared with the levels of IL-4 but those mated at 15 days post L. major infection had highest level of IFN-gamma mRNA. In 10 days pregnant infected C57BL/6 mice, levels of IL-4 were raised compared with IFN-gamma but mice mated at 16 hrs post L. major infection had highest level of IL-4. In 15 days pregnant infected mice, the levels of IL-4 were higher than IFN-gamma irrespective of the stage of L. major infection when the mice were mated. Mice infected with L. major 20 days post-partum produced more IFN-gamma than IL-4 from 16 hrs post L. major infection onwards. It may be concluded that increased IL-4 in pregnant infected C57BL/6 mice impairs the resistance of C57BL/6 mice to L. major infection especially in mice that were pregnant before effective immunity (5 hours post L. major infection) is mounted against L. major infection.
Resumo:
The time and the order of the appearance of the ossification centres were found to be similar in C3H and NMRI mice. Bodyweight comparisons confirmed these results. Location in the right as opposed to the left uterine horn, or in the upper, middle or lower part, was not found to influence the weight of the embryo. Significant differences in the weight of embryos within the same litter were used in investigating the sequence of ossification in embryos. This should prove useful in comparative morphology and teratology.
Resumo:
Optimisation of reproductive investment is crucial for Darwinian fitness, and detailed long-term studies are especially suited to unravel reproductive allocation strategies. Allocation strategies depend on the timing of resource acquisition, the timing of resource allocation, and trade-offs between different life-history traits. A distinction can be made between capital breeders that fuel reproduction with stored resources and income breeders that use recently acquired resources. In capital breeders, but not in income breeders, energy allocation may be decoupled from energy acquisition. Here, we tested the influence of extrinsic (weather conditions) and intrinsic (female characteristics) factors during energy storage, vitellogenesis and early gestation on reproductive investment, including litter mass, litter size, offspring mass and the litter size and offspring mass trade-off. We used data from a long-term study of the viviparous lizard, Lacerta (Zootoca) vivipara. In terms of extrinsic factors, rainfall during vitellogenesis was positively correlated with litter size and mass, but temperature did not affect reproductive investment. With respect to intrinsic factors, litter size and mass were positively correlated with current body size and postpartum body condition of the previous year, but negatively with parturition date of the previous year. Offspring mass was negatively correlated with litter size, and the strength of this trade-off decreased with the degree of individual variation in resource acquisition, which confirms theoretical predictions. The combined effects of past intrinsic factors and current weather conditions suggest that common lizards combine both recently acquired and stored resources to fuel reproduction. The effect of past energy store points out a trade-off between current and future reproduction.
Resumo:
SUMMARY : The shrews are among the most ancient of living eutherian mammals. They represent an interesting comparative model because of their extreme divergent species. The two shrew subfamilies, Soricinae and Crocidurinae are characterized by fundamental differences concerning their metabolic rates, litter size, period of gestation and different mating pattern. In this study we established and compared the sperm characteristics in four species of different genera of shrews (Sorex araneus, Neomys fodiens, Crocidura russula and Suncus murinus) in the context of the sperm competition hypothesis. The sperm competition concerns the competition between ejaculates of different males for fertilization of ova of a female within a single estrus period. As expected, a greater relative testis size (indicating the importance of polyandry) was associated with a higher number of cauda epididymal spermatozoa, higher level of circulating testosterone and a higher percentage of progressive sperm motility. In addition, we investigated if the basal metabolic rate (BMR) and relative testis size (RTS) may be correlated with the cycle length of spermatogenesis. In this purpose, we determined and compared the cycle length of spermatogenesis in six species of shrews belonging to two subfamilies: Soiricinae (Sorex araneus, Sorex coronatus, Sorex minutus, Neomys fodiens) and Crocidurinae (Crocidura russula, Sunctes murinus). Our results indicate that sperm competition and metabolic rate may act independently or together reducing cycle length of spermatogenesis and thus increase sperm production. We finally investigated this correlation across 32 mammalian species. After testing the data for phylogenetic independence, our results showed that BMR explained only 21 % of the variation, while the RTS explained 44% of the variation of the cycle length of spermatogenesis. The level of the sperm competition, indicated by RTS, is thus to our knowledge the most important factor influencing the speed of spermatogenesis in mammals. RESUME : Les musaraignes sont parmi les plus anciens mammifères vivants. Grâce à leurs extrêmes divergences, ils sont souvent utilisés comme modèles dans des études comparatives. Les deux sous-familles Soricinae et Crocidurinae sont caractérisées par des différences fondamentales, notamment en termes d'intensité du métabolisme, des stratégies de reproduction et du comportement social. Dans la première partie de cette étude, nous avons établi et comparé certaines "caractéristiques des spermatozoïdes chez quatre espèces de musaraignes appartenant à des genres différents (Sorex araneus, Neomys fodiens, Crocidura russula et Suncus murinus). Les résultats ont été interprétés dans le contexte de la théorie de la compétition spermatique, c'est-à-dire la compétition entre le sperme de deux ou plusieurs mâles pour féconder un maximum d'ovules de la même femelle. Cette compétition spermatique peut amener à certaines adaptations biologiques afin de produire plus de sperme. Comme attendu, une grande taille relative des testicules est associée à un nombre élevé de spermatozoïdes, dont la majorité présente une mobilité progressive. Un taux élévé de testostérone a également été observé. De plus, nous avons étudié l'influence du métabolisme basal ainsi que l'intensité de la compétition spermatique sur la durée du cycle de la spermatogenèse. Dans ce but, nous avons déterminé et comparé les durées de la spermatogenèse chez six espèces de musaraignes appartenant à deux sous-familles : Soricinae (Sorex araneus, Sorex coronatus, Sorex minutus, Neomys fodiens) et Crocidurinae (Crocidura russula, Suncus murinus). Les résultats obtenus indiquent que ces deux facteurs (l'intensité du métabolisme basal et de la compétition spermatique) agissent d'une manière dépendante ou indépendante dans le même sens. La conséquence de ces actions est une diminution de la durée de la spermatogenèse entraînant une augmentation de la production de spermatozoïdes. Nous avons finalement étudié ce phénomène dans l'ensemble des mammifères. Après avoir testé l'indépendance phylogénétique, nos résultats montrent que l'intensité de la compétition spermatique indiquée par le RTS est mieux corrélée avec la régulation de la durée de la spermatogenèse qu'avec l'intensité du métabolisme.
Resumo:
The energy requirements of reproducing and non-reproducing females of three species of Crocidura (C. russula, C. viaria, C. olivieri), and two species of Sorex (S. coronatus, S. minutus) were measured. Members of these two genera show different rates of metabolism and reproductive strategies (extreme altriciality and larger litter size in Sorex). During pregnancy, the daily energy intake (on either an absolute or a mass-specific basis) remained close to the non-reproductive value in all species. The absolute energy intake increased strongly after parturition and was influenced by the litter size. Peak energy intake of lactating females was extremely high, typically between 100% and 200% above the non-reproductive requirements in the Crocidura and about 300% above the non-reproductive intake in the Sorex. The mass-specific daily energy intake was reduced during lactation in the three smaller species but not in C. viaria and C. olivieri. This decrease probably involves the different thermoregulatory abilities and/or basal rate of metabolism of the pups. Average reproductive effort was about 50%, in the Crocidura species and above 150% in the Sorex species. The higher effort in the latter is partly due to a larger litter size. But in addition, extreme altriciality in the Sorex leads to an earlier increase in the energy requirements and thus is an energetically more expensive reproductive mode. The present results support the hypothesis that a higher basal rate of metabolism is associated with a higher reproductive effort in shrews.
Resumo:
We investigated how territory quality, settlement date and morphometry affected several components of yearly breeding success of a Swiss population of Savi's Warblers Locustella luscinioides. Territories occupied by males differed from unoccupied sites of similar size and location by having higher and denser reeds, a more extensive straw litter, and a thicker cover of dead sedge leaves. Territories with these characteristics were the ones first chosen by males upon spring arrival. These males, however, did not differ in morphometry from those that arrived later. Availability of suitable nesting sites; rather than food availability, appears to be an important choice criterion for territories. Early arriving males had higher breeding success than late males because of a higher mating success and more successful clutches. The positive correlation between male breeding success and territory quality was thus mediated through their common dependence on occupancy date. Female breeding success decreased with the date of first-clutch laying, mainly because late-nesting females fledged fewer broods. Breeding success in either sex did not correlate with morphometry. Our results provide clear support for territory choice by males, but not for mate or territory choice by females, and show the crucial role played by individual settlement date on many aspects of the breeding cycle of both sexes. We propose a lottery model of mate choice. arriving females obtain the best available territories even without choosing mates or territories; since males occupy territories sequentially and in order of decreasing quality, the few unpaired males available at any moment also occupy the best available territories.
Resumo:
We investigated dispersal patterns in the monogamous Crocidura russula, based both on direct field observations (mark-recapture data) and on genetic analyses (microsatellite loci). Natal dispersal was found to be low. Most juveniles settled within their natal territory or one immediately adjacent. Migration rate was estimated to two individuals per year and per population. The correlation between genetic and geographical distances over a 16 km transect implies that migration occurs over short ranges. Natal dispersal was restricted to first-litter juveniles weaned in early May; this result suggests a direct dependence of dispersal on reproductive opportunities. Natal dispersal was highly female biased, a pattern unusual among mammals. Its association with monogamy provides support for the resource-competition model of dispersal. Our results demonstrate that a state-biased dispersal can be directly inferred from microsatellite genotype distributions, which opens new perspectives for empirical studies in this area.
Resumo:
ABSTRACT: BACKGROUND: One central concept in evolutionary ecology is that current and residual reproductive values are negatively linked by the so-called cost of reproduction. Previous studies examining the nature of this cost suggested a possible involvement of oxidative stress resulting from the imbalance between pro- and anti-oxidant processes. Still, data remain conflictory probably because, although oxidative damage increases during reproduction, high systemic levels of oxidative stress might also constrain parental investment in reproduction. Here, we investigated variation in oxidative balance (i.e. oxidative damage and antioxidant defences) over the course of reproduction by comparing female laboratory mice rearing or not pups. RESULTS: A significant increase in oxidative damage over time was only observed in females caring for offspring, whereas antioxidant defences increased over time regardless of reproductive status. Interestingly, oxidative damage measured prior to reproduction was negatively associated with litter size at birth (constraint), whereas damage measured after reproduction was positively related to litter size at weaning (cost). CONCLUSIONS: Globally, our correlative results and the review of literature describing the links between reproduction and oxidative stress underline the importance of timing/dynamics when studying and interpreting oxidative balance in relation to reproduction. Our study highlights the duality (constraint and cost) of oxidative stress in life-history trade-offs, thus supporting the theory that oxidative stress plays a key role in life-history evolution.
Resumo:
(1) The common shrew Sorex araneus and Millet's shrew S. coronatus are sibling species.They are morphologically and genetically very similar but do not hybridize. Their parapatric distribution throughout south-western Europe, with a few narrow zones of distributional overlap, suggests that they are in competitive parapatry. (2) Two of these contact zones were studied; there was evidence of coexistence over periods of 2 years as well as habitat segregation. In both zones, the species segregated on litter thickness and humidity variables. (3) A simple analysis of spatial distribution showed that habitats visible in the field corresponded to the habitats selected by the species. Habitat selection was found throughout the annual life-cycle of the shrews. (4) In one contact zone, a removal experiment was performed to test whether habitat segregation is induced by interspecific interactions. The experiment showed that the species select habitats differentially when both are present and abandon habitat selection when their competitor is removed. (5) These results confirm the role of resource partitioning in promoting narrow rangesof distributional overlap between such parapatric species and qualitatively support the prediction of habitat selection theory that, in a two-species system, coexistence may be achieved by differential habitat selection to avoid competition. The results also support the view that the common shrew and Millet's shrew are in competitive parapatry.
Resumo:
BACKGROUND: Information on the age structure within populations of an endangered species can facilitate effective management. The Blue Mountains Water Skink (Eulamprus leuraensis) is a viviparous scincid lizard that is restricted to < 40 isolated montane swamps in south-eastern Australia. We used skeletochronology of phalanges (corroborated by mark-recapture data) to estimate ages of 222 individuals from 13 populations. RESULTS: These lizards grow rapidly, from neonatal size (30 mm snout-vent length) to adult size (about 70 mm SVL) within two to three years. Fecundity is low (mean 2.9 offspring per litter) and is affected by maternal body length and age. Offspring quality may decline with maternal age, based upon captive-born neonates (older females gave birth to slower offspring). In contrast to its broadly sympatric (and abundant) congener E. tympanum, E. leuraensis is short-lived (maximum 6 years, vs 15 years for E. tympanum). Litter size and offspring size are similar in the two species, but female E. leuraensis reproduce annually whereas many E. tympanum produce litters biennially. Thus, a low survival rate (rather than delayed maturation or low annual fecundity) is the key reason why E. leuraensis is endangered. Our 13 populations exhibited similar growth rates and population age structures despite substantial variation in elevation, geographic location and swamp size. However, larger populations (based on a genetic estimate of effective population size) contained older lizards, and thus a wider variance in ages. CONCLUSION: Our study suggests that low adult survival rates, as well as specialisation on a rare and fragmented habitat type (montane swamps) contribute to the endangered status of the Blue Mountains Water Skink.