62 resultados para learning space

em Université de Lausanne, Switzerland


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The human auditory system is comprised of specialized but interacting anatomic and functional pathways encoding object, spatial, and temporal information. We review how learning-induced plasticity manifests along these pathways and to what extent there are common mechanisms subserving such plasticity. A first series of experiments establishes a temporal hierarchy along which sounds of objects are discriminated along basic to fine-grained categorical boundaries and learned representations. A widespread network of temporal and (pre)frontal brain regions contributes to object discrimination via recursive processing. Learning-induced plasticity typically manifested as repetition suppression within a common set of brain regions. A second series considered how the temporal sequence of sound sources is represented. We show that lateralized responsiveness during the initial encoding phase of pairs of auditory spatial stimuli is critical for their accurate ordered perception. Finally, we consider how spatial representations are formed and modified through training-induced learning. A population-based model of spatial processing is supported wherein temporal and parietal structures interact in the encoding of relative and absolute spatial information over the initial ∼300ms post-stimulus onset. Collectively, these data provide insights into the functional organization of human audition and open directions for new developments in targeted diagnostic and neurorehabilitation strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Locating new wind farms is of crucial importance for energy policies of the next decade. To select the new location, an accurate picture of the wind fields is necessary. However, characterizing wind fields is a difficult task, since the phenomenon is highly nonlinear and related to complex topographical features. In this paper, we propose both a nonparametric model to estimate wind speed at different time instants and a procedure to discover underrepresented topographic conditions, where new measuring stations could be added. Compared to space filling techniques, this last approach privileges optimization of the output space, thus locating new potential measuring sites through the uncertainty of the model itself.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work was aimed at analyzing the effects of perinatal choline supplementation on the development of spatial abilities and upon adult performance. Choline supplementation (3.5 g/L in 0.02 M saccharin solution in tap water) was maintained for two weeks before birth and for up to four weeks postnatally. Additional supplementation was maintained from the fifth to the tenth week postnatally. Spatial-learning capacities were studied at the ages of 26, 65, or 80 days in a circular swimming pool (Morris place-navigation task) and at the age of 7 months in a homing arena. Treatment effects were found in both juvenile and adult rats, and thus persisted for several months after the cessation of the supplementation. The choline supplementation improved the performance in the water maze in a very selective manner. The most consistent effect was a reduction in the latency to reach a cued platform at a fixed position in space, whereas the improvement was limited when the platform was invisible and had to be located relative to distant cues only. However, after removal of the goal cue, the treated rats showed a better retention of the training position than did the control rats. A similar effect was observed in a dry-land task conducted in the homing arena. The choline supplementation thus induced a significant improvement of spatial memory. But since this effect was only evident following training with a salient cue, it might be regarded as an indirect effect promoted by an optimal combination of cue guidance with a place strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years there has been an explosive growth in the development of adaptive and data driven methods. One of the efficient and data-driven approaches is based on statistical learning theory (Vapnik 1998). The theory is based on Structural Risk Minimisation (SRM) principle and has a solid statistical background. When applying SRM we are trying not only to reduce training error ? to fit the available data with a model, but also to reduce the complexity of the model and to reduce generalisation error. Many nonlinear learning procedures recently developed in neural networks and statistics can be understood and interpreted in terms of the structural risk minimisation inductive principle. A recent methodology based on SRM is called Support Vector Machines (SVM). At present SLT is still under intensive development and SVM find new areas of application (www.kernel-machines.org). SVM develop robust and non linear data models with excellent generalisation abilities that is very important both for monitoring and forecasting. SVM are extremely good when input space is high dimensional and training data set i not big enough to develop corresponding nonlinear model. Moreover, SVM use only support vectors to derive decision boundaries. It opens a way to sampling optimization, estimation of noise in data, quantification of data redundancy etc. Presentation of SVM for spatially distributed data is given in (Kanevski and Maignan 2004).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Auditory spatial representations are likely encoded at a population level within human auditory cortices. We investigated learning-induced plasticity of spatial discrimination in healthy subjects using auditory-evoked potentials (AEPs) and electrical neuroimaging analyses. Stimuli were 100 ms white-noise bursts lateralized with varying interaural time differences. In three experiments, plasticity was induced with 40 min of discrimination training. During training, accuracy significantly improved from near-chance levels to approximately 75%. Before and after training, AEPs were recorded to stimuli presented passively with a more medial sound lateralization outnumbering a more lateral one (7:1). In experiment 1, the same lateralizations were used for training and AEP sessions. Significant AEP modulations to the different lateralizations were evident only after training, indicative of a learning-induced mismatch negativity (MMN). More precisely, this MMN at 195-250 ms after stimulus onset followed from differences in the AEP topography to each stimulus position, indicative of changes in the underlying brain network. In experiment 2, mirror-symmetric locations were used for training and AEP sessions; no training-related AEP modulations or MMN were observed. In experiment 3, the discrimination of trained plus equidistant untrained separations was tested psychophysically before and 0, 6, 24, and 48 h after training. Learning-induced plasticity lasted <6 h, did not generalize to untrained lateralizations, and was not the simple result of strengthening the representation of the trained lateralizations. Thus, learning-induced plasticity of auditory spatial discrimination relies on spatial comparisons, rather than a spatial anchor or a general comparator. Furthermore, cortical auditory representations of space are dynamic and subject to rapid reorganization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present research deals with the review of the analysis and modeling of Swiss franc interest rate curves (IRC) by using unsupervised (SOM, Gaussian Mixtures) and supervised machine (MLP) learning algorithms. IRC are considered as objects embedded into different feature spaces: maturities; maturity-date, parameters of Nelson-Siegel model (NSM). Analysis of NSM parameters and their temporal and clustering structures helps to understand the relevance of model and its potential use for the forecasting. Mapping of IRC in a maturity-date feature space is presented and analyzed for the visualization and forecasting purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study assesses gender differences in spatial and non-spatial relational learning and memory in adult humans behaving freely in a real-world, open-field environment. In Experiment 1, we tested the use of proximal landmarks as conditional cues allowing subjects to predict the location of rewards hidden in one of two sets of three distinct locations. Subjects were tested in two different conditions: (1) when local visual cues marked the potentially-rewarded locations, and (2) when no local visual cues marked the potentially-rewarded locations. We found that only 17 of 20 adults (8 males, 9 females) used the proximal landmarks to predict the locations of the rewards. Although females exhibited higher exploratory behavior at the beginning of testing, males and females discriminated the potentially-rewarded locations similarly when local visual cues were present. Interestingly, when the spatial and local information conflicted in predicting the reward locations, males considered both spatial and local information, whereas females ignored the spatial information. However, in the absence of local visual cues females discriminated the potentially-rewarded locations as well as males. In Experiment 2, subjects (9 males, 9 females) were tested with three asymmetrically-arranged rewarded locations, which were marked by local cues on alternate trials. Again, females discriminated the rewarded locations as well as males in the presence or absence of local cues. In sum, although particular aspects of task performance might differ between genders, we found no evidence that women have poorer allocentric spatial relational learning and memory abilities than men in a real-world, open-field environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose has been considered the major, if not the exclusive, energy substrate for the brain. But under certain physiological and pathological conditions other substrates, namely monocarboxylates (lactate, pyruvate and ketone bodies), can contribute significantly to satisfy brain energy demands. These monocarboxylates need to be transported across the blood-brain barrier or out of astrocytes into the extracellular space and taken up into neurons. It has been shown that monocarboxylates are transported by a family of proton-linked transporters called monocarboxylate transporters (MCTs). In the central nervous system, MCT2 is the predominant neuronal isoform and little is known about the regulation of its expression. Noradrenaline (NA), insulin and IGF-1 were previously shown to enhance the expression of MCT2 in cultured cortical neurons via a translational mechanism. Here we demonstrate that the well known brain neurotrophic factor BDNF enhances MCT2 protein expression in cultured cortical neurons and in synaptoneurosome preparations in a time- and concentrationdependent manner without affecting MCT2 mRNA levels. We observed that BDNF induced MCT2 expression by activation of MAPK as well as PI3K/Akt/mTOR signaling pathways. Furthermore, we investigated the possible post-transcriptional regulation of MCT2 expression by a neuronal miRNA. Then, we demonstrated that BDNF enhanced MCT2 expression in the hippocampus in vivo, in parallel with some post-synaptic proteins such as PSD95 and AMPA receptor GluR2/3 subunits, and two immediate early genes Arc and Zif268 known to be expressed in conditions related to synaptic plasticity. In the last part, we demonstrated in vivo that a downregulation of hippocampal MCT2 via silencing with an appropriate lentiviral vector in mice caused an impairment of working memory without reference memory deficit. In conclusion, these results suggest that regulation of neuronal monocarboxylate transporter MCT2 expression could be a key event in the context of synaptic plasticity, allowing an adequate energy substrate supply in situations of altered synaptic efficacy. - Le glucose représente le substrat énergétique majeur pour le cerveau. Cependant, dans certaines conditions physiologiques ou pathologiques, le cerveau a la capacité d'utiliser des substrats énergéiques appartenant à la classe des monocarboxylates (lactate, pyruvate et corps cétoniques) afin de satisfaire ses besoins énergétiques. Ces monocarboxylates doivent être transportés à travers la barrière hématoencéphalique mais aussi hors des astrocytes vers l'espace extracellulaire puis re-captés par les neurones. Leur transport est assuré par une famillle de transporteurs aux monocarboxylates (MCTs). Dans le système nerveux central, les neurones expriment principalement l'isoforme MCT2 mais peu d'informations sont disponibles concernant la régulation de son expression. Il a été montré que la noradrénaline, l'insuline et l'IGF-1 induisent l'expression de MCT2 dans des cultures de neurones corticaux par un mécanisme traductionnel. Dans cette étude nous démontrons dans un premier temps que le facteur neurotrophique BDNF augmente l'expression de MCT2 à la fois dans des cultures de neurones corticaux et dans les préparations synaptoneurosomales selon un décours temporel et une gamme de concentrations propre. Aucun changement n'a été observé concernant les niveaux d'ARNm de MCT2. Nous avons observé que le BDNF induisait l'expression de MCT2 par l'activation simultanée des voies de signalisation MAPK et PI3K/Akt/mTOR. De plus, nous nous sommes intéressés à une potentielle régulation par les micro-ARNs de la synthèse de MCT2. Ensuite, nous avons démontré que le BDNF induit aussi l'expression de MCT2 dans l'hippocampe de la souris en parallèle avec d'autres protéines post-synaptiques telles que PSD95 et GluR2/3 et avec deux « immediate early genes » tels que Arc et Zif268 connus pour être exprimés dans des conditions de plasticité synaptique. Dans un dernier temps, nous avons démontré qu'une diminution d'expression de MCT2 induite par le biais d'un siRNA exprimé via un vecteur lentiviral dans l'hippocampe de souris générait des déficits de mémoire de travail sans affecter la mémoire de référence. En conclusion, ces résultats nous suggèrent que le transporteur aux monocarboxylates neuronal MCT2 serait essentiel pour l'apport énergétique du lactate pour les neurones dans des conditions de haute activité neuronale comme c'est le cas pendant les processus de plasticité synaptique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Learning Affect Monitor (LAM) is a new computer-based assessment system integrating basic dimensional evaluation and discrete description of affective states in daily life, based on an autonomous adapting system. Subjects evaluate their affective states according to a tridimensional space (valence and activation circumplex as well as global intensity) and then qualify it using up to 30 adjective descriptors chosen from a list. The system gradually adapts to the user, enabling the affect descriptors it presents to be increasingly relevant. An initial study with 51 subjects, using a 1 week time-sampling with 8 to 10 randomized signals per day, produced n = 2,813 records with good reliability measures (e.g., response rate of 88.8%, mean split-half reliability of .86), user acceptance, and usability. Multilevel analyses show circadian and hebdomadal patterns, and significant individual and situational variance components of the basic dimension evaluations. Validity analyses indicate sound assignment of qualitative affect descriptors in the bidimensional semantic space according to the circumplex model of basic affect dimensions. The LAM assessment module can be implemented on different platforms (palm, desk, mobile phone) and provides very rapid and meaningful data collection, preserving complex and interindividually comparable information in the domain of emotion and well-being.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When individuals learn by trial-and-error, they perform randomly chosen actions and then reinforce those actions that led to a high payoff. However, individuals do not always have to physically perform an action in order to evaluate its consequences. Rather, they may be able to mentally simulate actions and their consequences without actually performing them. Such fictitious learners can select actions with high payoffs without making long chains of trial-and-error learning. Here, we analyze the evolution of an n-dimensional cultural trait (or artifact) by learning, in a payoff landscape with a single optimum. We derive the stochastic learning dynamics of the distance to the optimum in trait space when choice between alternative artifacts follows the standard logit choice rule. We show that for both trial-and-error and fictitious learners, the learning dynamics stabilize at an approximate distance of root n/(2 lambda(e)) away from the optimum, where lambda(e) is an effective learning performance parameter depending on the learning rule under scrutiny. Individual learners are thus unlikely to reach the optimum when traits are complex (n large), and so face a barrier to further improvement of the artifact. We show, however, that this barrier can be significantly reduced in a large population of learners performing payoff-biased social learning, in which case lambda(e) becomes proportional to population size. Overall, our results illustrate the effects of errors in learning, levels of cognition, and population size for the evolution of complex cultural traits. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two spatial tasks were designed to test specific properties of spatial representation in rats. In the first task, rats were trained to locate an escape hole at a fixed position in a visually homogeneous arena. This arena was connected with a periphery where a full view of the room environment existed. Therefore, rats were dependent on their memory trace of the previous position in the periphery to discriminate a position within the central region. Under these experimental conditions, the test animals showed a significant discrimination of the training position without a specific local view. In the second task, rats were trained in a radial maze consisting of tunnels that were transparent at their distal ends only. Because the central part of the maze was non-transparent, rats had to plan and execute appropriate trajectories without specific visual feedback from the environment. This situation was intended to encourage the reliance on prospective memory of the non-visited arms in selecting the following move. Our results show that acquisition performance was only slightly decreased compared to that shown in a completely transparent maze and considerably higher than in a translucent maze or in darkness. These two series of experiments indicate (1) that rats can learn about the relative position of different places with no common visual panorama, and (2) that they are able to plan and execute a sequence of visits to several places without direct visual feed-back about their relative position.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis explores the importance of literary New York City in the urban narratives of Edith Wharton and Anzia Yezierska. It specifically looks at the Empire City of the Progressive Period when the concept of the city was not only a new theme but also very much a typical American one which was as central to the American experience as had been the Western frontier. It could be argued, in fact, that the American city had become the new frontier where modern experiences like urbanization, industrialization, immigration, and also women's emancipation and suffrage, caused all kinds of sensations on the human scale from smoothly lived assimilation and acculturation to deeply felt alienation because of the constantly shifting urban landscape. The developing urban space made possible the emergence of new female literary protagonists like the working girl, the reformer, the prostitute, and the upper class lady dedicating her life to 'conspicuous consumption'. Industrialization opened up city space to female exploration: on the one hand, upper and middle class ladies ventured out of the home because of the many novel urban possibilities, and on the other, lower class and immigrant girls also left their domestic sphere to look for paid jobs outside the home. New York City at the time was not only considered the epicenter of the world at large, it was also a city of great extremes. Everything was constantly in flux: small brownstones made way for ever taller skyscrapers and huge waves of immigrants from Europe pushed native New Yorkers further uptown on the island, adding to the crowdedness and intensity of the urban experience. The city became a polarized urban space with Fifth Avenue representing one end of the spectrum and the Lower East Side the other. Questions of space and the urban home greatly mattered. It has been pointed out that the city setting functions as an ideal means for the display of human nature as well as social processes. Narrative representations of urban space, therefore, provide a similar canvas for a protagonist's journey and development. From widely diverging vantage points both Edith Wharton and Anzia Yezierska thus create a polarized city where domesticity is a primal concern. Looking at all of their New York narratives by close readings of exterior and interior city representations, this thesis shows how urban space greatly affects questions of identity, assimilation, and alienation in literary protagonists who cannot escape the influence of their respective urban settings. Edith Wharton's upper class "millionaire" heroines are framed and contained by the city interiors of "old" New York, making it impossible for them to truly participate in the urban landscape in order to develop outside of their 'Gilt Cages'. On the other side are Anzia Yezierska's struggling "immigrant" protagonists who, against all odds, never give up in their urban context of streets, rooftops, and stoops. Their New York City, while always challenging and perpetually changing, at least allows them perspectives of hope for a 'Promised Land' in the making. Central for both urban narrative approaches is the quest for a home as an architectural structure, a spiritual resting place, and a locus for identity forming. But just as the actual city embraces change, urban protagonists must embrace change also if they desire to find fulfillment and success. That this turns out to be much easier for Anzia Yezierska's driven immigrants rather than for Edith Wharton's well established native New Yorkers is a surprising conclusion to this urban theme.