15 resultados para learning activity

em Université de Lausanne, Switzerland


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In an uncertain environment, probabilities are key to predicting future events and making adaptive choices. However, little is known about how humans learn such probabilities and where and how they are encoded in the brain, especially when they concern more than two outcomes. During functional magnetic resonance imaging (fMRI), young adults learned the probabilities of uncertain stimuli through repetitive sampling. Stimuli represented payoffs and participants had to predict their occurrence to maximize their earnings. Choices indicated loss and risk aversion but unbiased estimation of probabilities. BOLD response in medial prefrontal cortex and angular gyri increased linearly with the probability of the currently observed stimulus, untainted by its value. Connectivity analyses during rest and task revealed that these regions belonged to the default mode network. The activation of past outcomes in memory is evoked as a possible mechanism to explain the engagement of the default mode network in probability learning. A BOLD response relating to value was detected only at decision time, mainly in striatum. It is concluded that activity in inferior parietal and medial prefrontal cortex reflects the amount of evidence accumulated in favor of competing and uncertain outcomes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fragile X syndrome (FXS) is characterized by intellectual disability and autistic traits, and results from the silencing of the FMR1 gene coding for a protein implicated in the regulation of protein synthesis at synapses. The lack of functional Fragile X mental retardation protein has been proposed to result in an excessive signaling of synaptic metabotropic glutamate receptors, leading to alterations of synapse maturation and plasticity. It remains, however, unclear how mechanisms of activity-dependent spine dynamics are affected in Fmr knockout (Fmr1-KO) mice and whether they can be reversed. Here we used a repetitive imaging approach in hippocampal slice cultures to investigate properties of structural plasticity and their modulation by signaling pathways. We found that basal spine turnover was significantly reduced in Fmr1-KO mice, but markedly enhanced by activity. Additionally, activity-mediated spine stabilization was lost in Fmr1-KO mice. Application of the metabotropic glutamate receptor antagonist α-Methyl-4-carboxyphenylglycine (MCPG) enhanced basal turnover, improved spine stability, but failed to reinstate activity-mediated spine stabilization. In contrast, enhancing phosphoinositide-3 kinase (PI3K) signaling, a pathway implicated in various aspects of synaptic plasticity, reversed both basal turnover and activity-mediated spine stabilization. It also restored defective long-term potentiation mechanisms in slices and improved reversal learning in Fmr1-KO mice. These results suggest that modulation of PI3K signaling could contribute to improve the cognitive deficits associated with FXS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and purpose: Decision making (DM) has been defined as the process through which a person forms preferences, selects and executes actions, and evaluates the outcome related to a selected choice. This ability represents an important factor for adequate behaviour in everyday life. DM impairment in multiple sclerosis (MS) has been previously reported. The purpose of the present study was to assess DM in patients with MS at the earliest clinically detectable time point of the disease. Methods: Patients with definite (n=109) or possible (clinically isolated syndrome, CIS; n=56) MS, a short disease duration (mean 2.3 years) and a minor neurological disability (mean EDSS 1.8) were compared to 50 healthy controls aged 18 to 60 years (mean age 32.2) using the Iowa Gambling Task (IGT). Subjects had to select a card from any of 4 decks (A/B [disadvantageous]; C/D [advantageous]). The game consisted of 100 trials then grouped in blocks of 20 cards for data analysis. Skill in DM was assessed by means of a learning index (LI) defined as the difference between the averaged last three block indexes and first two block indexes (LI=[(BI-3+BI-4+BI-5)/3-(BI-1+B2)/2]). Non parametric tests were used for statistical analysis. Results: LI was higher in the control group (0.24, SD 0.44) than in the MS group (0.21, SD 0.38), however without reaching statistical significance (p=0.7). Interesting differences were detected when MS patients were grouped according to phenotype. A trend to a difference between MS subgroups and controls was observed for LI (p=0.06), which became significant between MS subgroups (p=0.03). CIS patients who confirmed MS diagnosis by presenting a second relapse after study entry showed a dysfunction in the IGT in comparison to the other CIS (p=0.01) and definite MS (p=0.04) patients. In the opposite, CIS patients characterised by not entirely fulfilled McDonald criteria at inclusion and absence of relapse during the study showed an normal learning pattern on the IGT. Finally, comparing MS patients who developed relapses after study entry, those who remained clinically stable and controls, we observed impaired performances only in relapsing patients in comparison to stable patients (p=0.008) and controls (p=0.03). Discussion: These results raise the assumption of a sustained role for both MS relapsing activity and disease heterogeneity (i.e. infra-clinical severity or activity of MS) in the impaired process of decision making.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning and immunity are two adaptive traits with roles in central aspects of an organism's life: learning allows adjusting behaviours in changing environments, while immunity protects the body integrity against parasites and pathogens. While we know a lot about how these two traits interact in vertebrates, the interactions between learning and immunity remain poorly explored in insects. During my PhD, I studied three possible ways in which these two traits interact in the model system Drosophila melanogaster, a model organism in the study of learning and in the study of immunity. Learning can affect the behavioural defences against parasites and pathogens through the acquisition of new aversions for contaminated food for instance. This type of learning relies on the ability to associate a food-related cue with the visceral sickness following ingestion of contaminated food. Despite its potential implication in infection prevention, the existence of pathogen avoidance learning has been rarely explored in invertebrates. In a first part of my PhD, I tested whether D. melanogaster, which feed on food enriched in microorganisms, innately avoid the orally-acquired 'novel' virulent pathogen Pseudomonas entomophila, and whether it can learn to avoid it. Although flies did not innately avoid this pathogen, they decreased their preference for contaminated food over time, suggesting the existence of a form of learning based likely on infection-induced sickness. I further found that flies may be able to learn to avoid an odorant which was previously associated with the pathogen, but this requires confirmation with additional data. If this is confirmed, this would be the first time, to my knowledge, that pathogen avoidance learning is reported in an insect. The detrimental effect of infection on cognition and more specifically on learning ability is well documented in vertebrates and in social insects. While the underlying mechanisms are described in detail in vertebrates, experimental investigations are lacking in invertebrates. In a second part of my PhD, I tested the effect of an oral infection with natural pathogens on associative learning of D. melanogaster. By contrast with previous studies in insects, I found that flies orally infected with the virulent P. entomophila learned better the association of an odorant with mechanical shock than uninfected flies. The effect seems to be specific to a gut infection, and so far I have not been able to draw conclusions on the respective contributions of the pathogen's virulence and of the flies' immune activity in this effect. Interestingly, infected flies may display an increased sensitivity to physical pain. If the learning improvement observed in infected flies was due partially to the activity of the immune system, my results would suggest the existence of physiological connections between the immune system and the nervous system. The basis of these connections would then need to be addressed. Learning and immunity are linked at the physiological level in social insects. Physiological links between traits often result from the expression of genetic links between these traits. However, in social insects, there is no evidence that learning and immunity may be involved in an evolutionary trade-off. I previously reported a positive effect of infection on learning in D. melanogaster. This might suggest that a positive genetic link could exist between learning and immunity. We tested this hypothesis with two approaches: the diallel cross design with inbred lines, and the isofemale lines design. The two approaches provided consistent results: we found no additive genetic correlation between learning and resistance to infection with the diallel cross, and no genetic correlation in flies which are not yet adapted to laboratory conditions in isofemale lines. Consistently with the literature, the two studies suggested that the positive effect of infection on learning I observed might not be reflected by a positive evolutionary link between learning and immunity. Nevertheless, the existence of complex genetic relationships between the two traits cannot be excluded. - L'apprentissage et l'immunité sont deux caractères à valeur adaptative impliqués dans des aspects centraux de la vie d'un organisme : l'apprentissage permet d'ajuster les comportements pour faire face aux changements de l'environnement, tandis que l'immunité protège l'intégrité corporelle contre les attaques des parasites et des pathogènes. Alors que les interactions entre l'apprentissage et l'immunité sont bien documentées chez les vertébrés, ces interactions ont été très peu étudiées chez les insectes. Pendant ma thèse, je me suis intéressée à trois aspects des interactions possibles entre l'apprentissage et l'immunité chez la mouche du vinaigre Drosophila melanogaster, qui est un organisme modèle dans l'étude à la fois de l'apprentissage et de l'immunité. L'apprentissage peut affecter les défenses comportementales contre les parasites et les pathogènes par l'acquisition de nouvelles aversions pour la nourriture contaminée par exemple. Ce type d'apprentissage repose sur la capacité à associer une caractéristique de la nourriture avec la maladie qui suit l'ingestion de cette nourriture. Malgré les implications potentielles pour la prévention des infections, l'évitement appris des pathogènes a été rarement étudié chez les invertébrés. Dans une première partie de ma thèse, j'ai testé si les mouches, qui se nourrissent sur des milieux enrichis en micro-organismes, évitent de façon innée un 'nouveau' pathogène virulent Pseudomonas entomophila, et si elles ont la capacité d'apprendre à l'éviter. Bien que les mouches ne montrent pas d'évitement inné pour ce pathogène, elles diminuent leur préférence pour de la nourriture contaminée dans le temps, suggérant l'existence d'une forme d'apprentissage basée vraisemblablement sur la maladie générée par l'infection. J'ai ensuite observé que les mouches semblent être capables d'apprendre à éviter une odeur qui était au préalable associée avec ce pathogène, mais cela reste à confirmer par la collecte de données supplémentaires. Si cette observation est confirmée, cela sera la première fois, à ma connaissance, que l'évitement appris des pathogènes est décrit chez un insecte. L'effet détrimental des infections sur la cognition et plus particulièrement sur les capacités d'apprentissage est bien documenté chez les vertébrés et les insectes sociaux. Alors que les mécanismes sous-jacents sont détaillés chez les vertébrés, des études expérimentales font défaut chez les insectes. Dans une seconde partie de ma thèse, j'ai mesuré les effets d'une infection orale par des pathogènes naturels sur les capacités d'apprentissage associatif de la drosophile. Contrairement aux études précédentes chez les insectes, j'ai trouvé que les mouches infectées par le pathogène virulent P. entomophila apprennent mieux à associer une odeur avec des chocs mécaniques que des mouches non infectées. Cet effet semble spécifique à l'infection orale, et jusqu'à présent je n'ai pas pu conclure sur les contributions respectives de la virulence du pathogène et de l'activité immunitaire des mouches dans cet effet. De façon intéressante, les mouches infectées pourraient montrer une plus grande réactivité à la douleur physique. Si l'amélioration de l'apprentissage observée chez les mouches infectées était due en partie à l'activité du système immunitaire, mes résultats suggéreraient l'existence de connections physiologiques entre le système immunitaire et le système nerveux. Les mécanismes de ces connections seraient à explorer. L'apprentissage et l'immunité sont liés sur un plan physiologique chez les insectes sociaux. Les liens physiologiques entre les caractères résultent souvent de l'expression de liens entre ces caractères au niveau génétique. Cependant, chez les insectes sociaux, il n'y a pas de preuve que l'apprentissage et l'immunité soient liés par un compromis évolutif. J'ai précédemment rapporté un effet positif de l'infection sur l'apprentissage chez la drosophile. Cela pourrait suggérer qu'une relation génétique positive existerait entre l'apprentissage et l'immunité. Nous avons testé cette hypothèse par deux approches : le croisement diallèle avec des lignées consanguines, et les lignées isofemelles. Les deux approches ont fournies des résultats similaires : nous n'avons pas détecté de corrélation génétique additive entre l'apprentissage et la résistance à l'infection avec le croisement diallèle, et pas de corrélation génétique chez des mouches non adaptées aux conditions de laboratoire avec les lignées isofemelles. En ligne avec la littérature, ces deux études suggèrent que l'effet positif de l'infection sur l'apprentissage que j'ai précédemment observé ne refléterait pas un lien évolutif positif entre l'apprentissage et l'immunité. Néanmoins, l'existence de relations génétiques complexes n'est pas exclue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In fear conditioning, an animal learns to associate an unconditioned stimulus (US), such as a shock, and a conditioned stimulus (CS), such as a tone, so that the presentation of the CS alone can trigger conditioned responses. Recent research on the lateral amygdala has shown that following cued fear conditioning, only a subset of higher-excitable neurons are recruited in the memory trace. Their selective deletion after fear conditioning results in a selective erasure of the fearful memory. I hypothesize that the recruitment of highly excitable neurons depends on responsiveness to stimuli, intrinsic excitability and local connectivity. In addition, I hypothesize that neurons recruited for an initial memory also participate in subsequent memories, and that changes in neuronal excitability affect secondary fear learning. To address these hypotheses, I will show that A) a rat can learn to associate two successive short-term fearful memories; B) neuronal populations in the LA are competitively recruited in the memory traces depending on individual neuronal advantages, as well as advantages granted by the local network. By performing two successive cued fear conditioning experiments, I found that rats were able to learn and extinguish the two successive short-term memories, when tested 1 hour after learning for each memory. These rats were equipped with a system of stable extracellular recordings that I developed, which allowed to monitor neuronal activity during fear learning. 233 individual putative pyramidal neurons could modulate their firing rate in response to the conditioned tone (conditioned neurons) and/or non- conditioned tones (generalizing neurons). Out of these recorded putative pyramidal neurons 86 (37%) neurons were conditioned to one or both tones. More precisely, one population of neurons encoded for a shared memory while another group of neurons likely encoded the memories' new features. Notably, in spite of a successful behavioral extinction, the firing rate of those conditioned neurons in response to the conditioned tone remained unchanged throughout memory testing. Furthermore, by analyzing the pre-conditioning characteristics of the conditioned neurons, I determined that it was possible to predict neuronal recruitment based on three factors: 1) initial sensitivity to auditory inputs, with tone-sensitive neurons being more easily recruited than tone- insensitive neurons; 2) baseline excitability levels, with more highly excitable neurons being more likely to become conditioned; and 3) the number of afferent connections received from local neurons, with neurons destined to become conditioned receiving more connections than non-conditioned neurons. - En conditionnement de la peur, un animal apprend à associer un stimulus inconditionnel (SI), tel un choc électrique, et un stimulus conditionné (SC), comme un son, de sorte que la présentation du SC seul suffit pour déclencher des réflexes conditionnés. Des recherches récentes sur l'amygdale latérale (AL) ont montré que, suite au conditionnement à la peur, seul un sous-ensemble de neurones plus excitables sont recrutés pour constituer la trace mnésique. Pour apprendre à associer deux sons au même SI, je fais l'hypothèse que les neurones entrent en compétition afin d'être sélectionnés lors du recrutement pour coder la trace mnésique. Ce recrutement dépendrait d'un part à une activation facilité des neurones ainsi qu'une activation facilité de réseaux de neurones locaux. En outre, je fais l'hypothèse que l'activation de ces réseaux de l'AL, en soi, est suffisante pour induire une mémoire effrayante. Pour répondre à ces hypothèses, je vais montrer que A) selon un processus de mémoire à court terme, un rat peut apprendre à associer deux mémoires effrayantes apprises successivement; B) des populations neuronales dans l'AL sont compétitivement recrutées dans les traces mnésiques en fonction des avantages neuronaux individuels, ainsi que les avantages consentis par le réseau local. En effectuant deux expériences successives de conditionnement à la peur, des rats étaient capables d'apprendre, ainsi que de subir un processus d'extinction, pour les deux souvenirs effrayants. La mesure de l'efficacité du conditionnement à la peur a été effectuée 1 heure après l'apprentissage pour chaque souvenir. Ces rats ont été équipés d'un système d'enregistrements extracellulaires stables que j'ai développé, ce qui a permis de suivre l'activité neuronale pendant l'apprentissage de la peur. 233 neurones pyramidaux individuels pouvaient moduler leur taux d'activité en réponse au son conditionné (neurones conditionnés) et/ou au son non conditionné (neurones généralisant). Sur les 233 neurones pyramidaux putatifs enregistrés 86 (37%) d'entre eux ont été conditionnés à un ou deux tons. Plus précisément, une population de neurones code conjointement pour un souvenir partagé, alors qu'un groupe de neurones différent code pour de nouvelles caractéristiques de nouveaux souvenirs. En particulier, en dépit d'une extinction du comportement réussie, le taux de décharge de ces neurones conditionné en réponse à la tonalité conditionnée est resté inchangée tout au long de la mesure d'apprentissage. En outre, en analysant les caractéristiques de pré-conditionnement des neurones conditionnés, j'ai déterminé qu'il était possible de prévoir le recrutement neuronal basé sur trois facteurs : 1) la sensibilité initiale aux entrées auditives, avec les neurones sensibles aux sons étant plus facilement recrutés que les neurones ne répondant pas aux stimuli auditifs; 2) les niveaux d'excitabilité des neurones, avec les neurones plus facilement excitables étant plus susceptibles d'être conditionnés au son ; et 3) le nombre de connexions reçues, puisque les neurones conditionné reçoivent plus de connexions que les neurones non-conditionnés. Enfin, nous avons constaté qu'il était possible de remplacer de façon satisfaisante le SI lors d'un conditionnement à la peur par des injections bilatérales de bicuculline, un antagoniste des récepteurs de l'acide y-Aminobutirique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: One characteristic of post traumatic stress disorder is an inability to adapt to a safe environment i.e. to change behavior when predictions of adverse outcomes are not met. Recent studies have also indicated that PTSD patients have altered pain processing, with hyperactivation of the putamen and insula to aversive stimuli (Geuze et al, 2007). The present study examined neuronal responses to aversive and predicted aversive events. Methods: Twenty-four trauma exposed non-PTSD controls and nineteen subjects with PTSD underwent fMRI imaging during a partial reinforcement fear conditioning paradigm, with a mild electric shock as the unconditioned stimuli (UCS). Three conditions were analyzed: actual presentations of the UCS, events when a UCS was expected, but omitted (CS+), and events when the UCS was neither expected nor delivered (CS-). Results: The UCS evoked significant alterations in the pain matrix consisting of the brainstem, the midbrain, the thalamus, the insula, the anterior and middle cingulate and the contralateral somatosensory cortex. PTSD subjects displayed bilaterally elevated putamen activity to the electric shock, as compared to controls. In trials when USC was expected, but omitted, significant activations were observed in the brainstem, the midbrain, the anterior insula and the anterior cingulate. PTSD subjects displayed similar activations, but also elevated activations in the amygdala and the posterior insula. Conclusions: These results indicate altered fear and safety learning in PTSD, and neuronal activations are further explored in terms of functional connectivity using psychophysiological interaction analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose and validate a multivariate classification algorithm for characterizing changes in human intracranial electroencephalographic data (iEEG) after learning motor sequences. The algorithm is based on a Hidden Markov Model (HMM) that captures spatio-temporal properties of the iEEG at the level of single trials. Continuous intracranial iEEG was acquired during two sessions (one before and one after a night of sleep) in two patients with depth electrodes implanted in several brain areas. They performed a visuomotor sequence (serial reaction time task, SRTT) using the fingers of their non-dominant hand. Our results show that the decoding algorithm correctly classified single iEEG trials from the trained sequence as belonging to either the initial training phase (day 1, before sleep) or a later consolidated phase (day 2, after sleep), whereas it failed to do so for trials belonging to a control condition (pseudo-random sequence). Accurate single-trial classification was achieved by taking advantage of the distributed pattern of neural activity. However, across all the contacts the hippocampus contributed most significantly to the classification accuracy for both patients, and one fronto-striatal contact for one patient. Together, these human intracranial findings demonstrate that a multivariate decoding approach can detect learning-related changes at the level of single-trial iEEG. Because it allows an unbiased identification of brain sites contributing to a behavioral effect (or experimental condition) at the level of single subject, this approach could be usefully applied to assess the neural correlates of other complex cognitive functions in patients implanted with multiple electrodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multisensory experiences influence subsequent memory performance and brain responses. Studies have thus far concentrated on semantically congruent pairings, leaving unresolved the influence of stimulus pairing and memory sub-types. Here, we paired images with unique, meaningless sounds during a continuous recognition task to determine if purely episodic, single-trial multisensory experiences can incidentally impact subsequent visual object discrimination. Psychophysics and electrical neuroimaging analyses of visual evoked potentials (VEPs) compared responses to repeated images either paired or not with a meaningless sound during initial encounters. Recognition accuracy was significantly impaired for images initially presented as multisensory pairs and could not be explained in terms of differential attention or transfer of effects from encoding to retrieval. VEP modulations occurred at 100-130ms and 270-310ms and stemmed from topographic differences indicative of network configuration changes within the brain. Distributed source estimations localized the earlier effect to regions of the right posterior temporal gyrus (STG) and the later effect to regions of the middle temporal gyrus (MTG). Responses in these regions were stronger for images previously encountered as multisensory pairs. Only the later effect correlated with performance such that greater MTG activity in response to repeated visual stimuli was linked with greater performance decrements. The present findings suggest that brain networks involved in this discrimination may critically depend on whether multisensory events facilitate or impair later visual memory performance. More generally, the data support models whereby effects of multisensory interactions persist to incidentally affect subsequent behavior as well as visual processing during its initial stages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of bilateral electrolytic lesions of the entorhinal cortex were studied in male adult woodmice. Experiments were designed to allow separate analysis of the basal activity level and exploratory behavior. Activity recording was conducted in three situations: (a) 24-hr wheel running in the home cage pre- and postoperatively; (b) 24-hr activity composition in a large enclosure over 4 days, 5 to 9 days postoperatively; and (c) sequence and duration of visits in a residential plus maze 11 to 14 days postoperatively. Medial entorhinal cortex lesion involving the para- and presubiculum increased the 24-hr amount of movements in the enclosure (b) without increasing wheel running in any situation (a or b). This lesion also enhanced the locomotor reactivity to being introduced into the plus maze and impaired exploratory behavior. This last effect was equally apparent when the whole situation was new or when part of the familiar maze was modified. Lesioned woodmice did notice the new element but did not show active focalization of their behavior on that element. Data showed that lesion induced hyperactivity and changes of exploratory behavior were not necessarily associated. Novelty detection was performed but it is not clear now on what information this discrimination was based.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study describes a task that combines random searching with goal directed navigation. The testing was conducted on a circular elevated open field (80 cm in diameter), with an unmarked target area (20 cm in diameter) in the center of 1 of the 4 quadrants. Whenever the rat entered the target area, the computerized tracking system released a pellet to a random point on the open field. Rats were able to learn the task under light and in total darkness, and on a stable or a rotating arena. Visual information was important in light, but idiothetic information became crucial in darkness. Learning of a new position was quicker under light than in total darkness on a rotating arena. The place preference task should make it possible to study place cells (PCs) when the rats use an allothetic (room frame) or idiothetic (arena frame) representation of space and to compare the behavioral response with the PCs' activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scientific reporting and communication is a challenging topic for which traditional study programs do not offer structured learning activities on a regular basis. This paper reports on the development and implementation of a web application and associated learning activities that intend to raise the awareness of reporting and communication issues among students in forensic science and law. The project covers interdisciplinary case studies based on a library of written reports about forensic examinations. Special features of the web framework, in particular a report annotation tool, support the design of various individual and group learning activities that focus on the development of knowledge and competence in dealing with reporting and communication challenges in the students' future areas of professional activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synaptosomal-associated protein of 25 kDa (SNAP-25) is thought to play a key role in vesicle exocytosis and in the control of transmitter release. However, the precise mechanisms of action as well as the regulation of SNAP-25 remain unclear. Here we show by immunoprecipitation that activation of protein kinase C (PKC) by phorbol esters results in an increase in SNAP-25 phosphorylation. In addition, immunochemical analysis of two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels shows that SNAP-25 focuses as three or four distinct spots in the expected range of molecular weight and isoelectric point. Changing the phosphorylation level of the protein by incubating the slices in the presence of either a PKC agonist (phorbol 12,13-dibutyrate) or antagonist (chelerythrine) modified the distribution of SNAP-25 among these spots. Phorbol 12,13-dibutyrate increased the intensity of the spots with higher molecular weight and lower isoelectric point, whereas chelerythrine produced the opposite effect. This effect was specific for regulators of PKC, as agonists of other kinases did not produce similar changes. Induction of long-term potentiation, a property involved in learning mechanisms, and production of seizures with a GABA(A) receptor antagonist also increased the intensity of the spots with higher molecular weight and lower isoelectric point. This effect was prevented by the PKC inhibitor chelerythrine. We conclude that SNAP-25 can be phosphorylated in situ by PKC in an activity-dependent manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose-dependent insulinotropic polypeptide (GIP) is a key incretin hormone, released from intestine after a meal, producing a glucose-dependent insulin secretion. The GIP receptor (GIPR) is expressed on pyramidal neurons in the cortex and hippocampus, and GIP is synthesized in a subset of neurons in the brain. However, the role of the GIPR in neuronal signaling is not clear. In this study, we used a mouse strain with GIPR gene deletion (GIPR KO) to elucidate the role of the GIPR in neuronal communication and brain function. Compared with C57BL/6 control mice, GIPR KO mice displayed higher locomotor activity in an open-field task. Impairment of recognition and spatial learning and memory of GIPR KO mice were found in the object recognition task and a spatial water maze task, respectively. In an object location task, no impairment was found. GIPR KO mice also showed impaired synaptic plasticity in paired-pulse facilitation and a block of long-term potentiation in area CA1 of the hippocampus. Moreover, a large decrease in the number of neuronal progenitor cells was found in the dentate gyrus of transgenic mice, although the numbers of young neurons was not changed. Together the results suggest that GIP receptors play an important role in cognition, neurotransmission, and cell proliferation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activation dynamics of hippocampal subregions during spatial learning and their interplay with neocortical regions is an important dimension in the understanding of hippocampal function. Using the (14C)-2-deoxyglucose autoradiographic method, we have characterized the metabolic changes occurring in hippocampal subregions in mice while learning an eight-arm radial maze task. Autoradiogram densitometry revealed a heterogeneous and evolving pattern of enhanced metabolic activity throughout the hippocampus during the training period and on recall. In the early stages of training, activity was enhanced in the CA1 area from the intermediate portion to the posterior end as well as in the CA3 area within the intermediate portion of the hippocampus. At later stages, CA1 and CA3 activations spread over the entire longitudinal axis, while dentate gyrus (DG) activation occurred from the anterior to the intermediate zone. Activation of the retrosplenial cortex but not the amygdala was also observed during the learning process. On recall, only DG activation was observed in the same anterior part of the hippocampus. These results suggest the existence of a functional segmentation of the hippocampus, each subregion being dynamically but also differentially recruited along the acquisition, consolidation, and retrieval process in parallel with some neocortical sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recognition of environmental sounds is believed to proceed through discrimination steps from broad to more narrow categories. Very little is known about the neural processes that underlie fine-grained discrimination within narrow categories or about their plasticity in relation to newly acquired expertise. We investigated how the cortical representation of birdsongs is modulated by brief training to recognize individual species. During a 60-minute session, participants learned to recognize a set of birdsongs; they improved significantly their performance for trained (T) but not control species (C), which were counterbalanced across participants. Auditory evoked potentials (AEPs) were recorded during pre- and post-training sessions. Pre vs. post changes in AEPs were significantly different between T and C i) at 206-232ms post stimulus onset within a cluster on the anterior part of the left superior temporal gyrus; ii) at 246-291ms in the left middle frontal gyrus; and iii) 512-545ms in the left middle temporal gyrus as well as bilaterally in the cingulate cortex. All effects were driven by weaker activity for T than C species. Thus, expertise in discriminating T species modulated early stages of semantic processing, during and immediately after the time window that sustains the discrimination between human vs. animal vocalizations. Moreover, the training-induced plasticity is reflected by the sharpening of a left lateralized semantic network, including the anterior part of the temporal convexity and the frontal cortex. Training to identify birdsongs influenced, however, also the processing of C species, but at a much later stage. Correct discrimination of untrained sounds seems to require an additional step which results from lower-level features analysis such as apperception. We therefore suggest that the access to objects within an auditory semantic category is different and depends on subject's level of expertise. More specifically, correct intra-categorical auditory discrimination for untrained items follows the temporal hierarchy and transpires in a late stage of semantic processing. On the other hand, correct categorization of individually trained stimuli occurs earlier, during a period contemporaneous with human vs. animal vocalization discrimination, and involves a parallel semantic pathway requiring expertise.