4 resultados para lack of catalytic mechanism
em Université de Lausanne, Switzerland
Resumo:
Potential risks of a secondary formation of polychlorinated dibenzodioxins/furans (PCDD/Fs) were assessed for two cordierite-based, wall-through diesel particulate filters (DPFs) for which soot combustion was either catalyzed with an iron- or a copper-based fuel additive. A heavy duty diesel engine was used as test platform, applying the eight-stage ISO 8178/4 C1 cycle. DPF applications neither affected the engine performance, nor did they increase NO, NO2, CO, and CO2 emissions. The latter is a metric for fuel consumption. THC emissions decreased by about 40% when deploying DPFs. PCDD/F emissions, with a focus on tetra- to octachlorinated congeners, were compared under standard and worst case conditions (enhanced chlorine uptake). The iron-catalyzed DPF neither increased PCDD/F emissions, nor did it change the congener pattern, even when traces of chlorine became available. In case of copper, PCDD/F emissions increased by up to 3 orders of magnitude from 22 to 200 to 12 700 pg I-TEQ/L with fuels of < 2, 14, and 110 microg/g chlorine, respectively. Mainly lower chlorinated DD/Fs were formed. Based on these substantial effects on PCDD/F emissions, the copper-catalyzed DPF system was not approved for workplace applications, whereas the iron system fulfilled all the specifications of the Swiss procedures for DPF approval (VERT).
Resumo:
Patients with glioblastoma (GBM) have variable clinical courses, but the factors that underlie this heterogeneity are not understood. To determine whether the presence of the telomerase-independent alternative lengthening of telomeres (ALTs) mechanism is a significant prognostic factor for survival, we performed a retrospective analysis of 573 GBM patients. The presence of ALT was identified in paraffin sections using a combination of immunofluorescence for promyelocytic leukemia body and telomere fluorescence in situ hybridization. Alternative lengthening of telomere was present in 15% of the GBM patients. Patients with ALT had longer survival that was independent of age, surgery, and other treatments. Mutations in isocitrate dehydrogenase (IDH1mut) 1 frequently accompanied ALT, and in the presence of both molecular events, there was significantly longer overall survival. These data suggest that most ALT+ tumors may be less aggressive proneural GBMs, and the better prognosis may relate to the set of genetic changes associated with this tumor subtype. Despite improved overall survival of patients treated with the addition of chemotherapy to radiotherapy and surgery, ALT and chemotherapy independently provided a survival advantage, but these factors were not found to be additive. These results suggest a critical need for developing new therapies to target these specific GBM subtypes.
Resumo:
Macrophage migration inhibitory factor (MIF) is a homotrimeric multifunctional proinflammatory cytokine that has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. Current therapeutic strategies for targeting MIF focus on developing inhibitors of its tautomerase activity or modulating its biological activities using anti-MIF neutralizing antibodies. Herein we report a new class of isothiocyanate (ITC)-based irreversible inhibitors of MIF. Modification by benzyl isothiocyanate (BITC) and related analogues occurred at the N-terminal catalytic proline residue without any effect on the oligomerization state of MIF. Different alkyl and arylalkyl ITCs modified MIF with nearly the same efficiency as BITC. To elucidate the mechanism of action, we performed detailed biochemical, biophysical, and structural studies to determine the effect of BITC and its analogues on the conformational state, quaternary structure, catalytic activity, receptor binding, and biological activity of MIF. Light scattering, analytical ultracentrifugation, and NMR studies on unmodified and ITC-modified MIF demonstrated that modification of Pro1 alters the tertiary, but not the secondary or quaternary, structure of the trimer without affecting its thermodynamic stability. BITC induced drastic effects on the tertiary structure of MIF, in particular residues that cluster around Pro1 and constitute the tautomerase active site. These changes in tertiary structure and the loss of catalytic activity translated into a reduction in MIF receptor binding activity, MIF-mediated glucocorticoid overriding, and MIF-induced Akt phosphorylation. Together, these findings highlight the role of tertiary structure in modulating the biochemical and biological activities of MIF and present new opportunities for modulating MIF biological activities in vivo.