11 resultados para iodo-125
em Université de Lausanne, Switzerland
Resumo:
It is debated whether chronic hypertension increases the risk of cardiovascular incidents during anaesthesia. We studied all elective surgical operations performed in adults under general or regional anaesthesia between 2000 and 2004, in 24 hospitals collecting computerised clinical data on all anaesthetics since 1996. The focus was on cardiovascular incidents, though other anaesthesia-related incidents were also evaluated. Among 124,939 interventions, 27,881 (22%) were performed in hypertensive patients. At least one cardiovascular incident occurred in 7549 interventions (6% (95% CI 5.9-6.2%)). The average adjusted odds ratio of cardiovascular risk for chronic hypertension was 1.38 (95% CI 1.27-1.49). However, across hospitals, adjusted odd ratios varied from 0.41 up to 2.25. Hypertension did not increase the risk of other incidents. Hypertensive patients are still at risk of intra-operative cardiovascular incidents, while risk heterogeneity across hospitals, despite taking account of casemix and hospital characteristics, suggests variations in anaesthetic practices.
Resumo:
Copper-67 has comparable beta-particle emissions to that of 131I, but it displays more favorable gamma emission characteristics for application in radioimmunotherapy (RIT). This study investigates the potential of 67Cu-labeled monoclonal antibody (MAb) 35 for RIT of colorectal carcinoma. METHODS: Biokinetics of simultaneously injected 67Cu- and 125I-labeled MAb35 were studied in six patients scheduled for surgery of primary colorectal cancer. RESULTS: Whole-body clearance (T 1/2) of 67Cu, estimated from sequential anterior and posterior whole-body scans and corrected for decay of 67Cu, was 41 hr. Serum clearance of 67Cu was faster (27.41 hr) than that of 125I (38.33 hr). Mean tumor uptake of the 67Cu-labeled compound (0.0133% ID/g) exceeded that of 125I (0.0095% ID/g), and tumor-to-blood ratios were higher for 67Cu than for 125I, with averages of 6.07 and 2.41, respectively. The average 67Cu/125I ratio was 1.9 for tumor uptake, 0.7 for blood and 2.6 for tumor-to-blood ratios. Nonspecific liver uptake of 67Cu as calculated from whole-body scans was high in four patients, up to 25% of residual whole-body activity at 48 hr, but did not increase with time. We also observed some nonspecific bowel activity, as well as moderate to high uptake in benign polyps. CONCLUSION: Copper-67-labeled MAb35 is more favorable than its radioiodine-labeled counterpart for RIT of colorectal carcinoma due to higher tumor-to-blood ratios, but the problem of nonspecific liver and bowel uptake must first be overcome. The absolute accumulation of activity in tumor remains low, however, so the probability of cure with this compound alone is questionable. The use of 67Cu as one component of a multimodality adjuvant treatment seems to remain the most appropriate application for RIT.
Resumo:
PURPOSE: 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT), a cell proliferation positron emission tomography (PET) tracer, has been shown in numerous tumors to be more specific than 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) but less sensitive. We studied the capacity of a nontoxic concentration of 5-fluoro-2'-deoxyuridine (FdUrd), a thymidine synthesis inhibitor, to increase uptake of [(18)F]FLT in tumor xenografts. METHODS: The duration of the FdUrd effect in vivo on tumor cell cycling and thymidine analogue uptake was studied by varying FdUrd pretreatment timing and holding constant the timing of subsequent flow cytometry and 5-[(125)I]iodo-2'-deoxyuridine biodistribution measurements. In [(18)F]FLT studies, FdUrd pretreatment was generally performed 1 h before radiotracer injection. [(18)F]FLT biodistributions were measured 1 to 3 h after radiotracer injection of mice grafted with five different human tumors and pretreated or not with FdUrd and compared with [(18)F]FDG tumor uptake. Using microPET, the dynamic distribution of [(18)F]FLT was followed for 1.5 h in FdUrd pretreated mice. High-field T2-weighted magnetic resonance imaging (MRI) and histology were used comparatively in assessing tumor viability and proliferation. RESULTS: FdUrd induced an immediate increase in tumor uptake of 5-[(125)I]iodo-2'-deoxyuridine, that vanished after 6 h, as also confirmed by flow cytometry. Biodistribution measurements showed that FdUrd pretreatment increased [(18)F]FLT uptake in all tumors by factors of 3.2 to 7.8 compared with controls, while [(18)F]FDG tumor uptake was about fourfold and sixfold lower in breast cancers and lymphoma. Dynamic PET in FdUrd pretreated mice showed that [(18)F]FLT uptake in all tumors increased steadily up to 1.5 h. MRI showed a well-vascularized homogenous lymphoma with high [(18)F]FLT uptake, while in breast cancer, a central necrosis shown by MRI was inactive in PET, consistent with the histomorphological analysis. CONCLUSION: We showed a reliable and significant uptake increase of [(18)F]FLT in different tumor xenografts after low-dose FdUrd pretreatment. These results show promise for a clinical application of FdUrd aimed at increasing the sensitivity of [(18)F]FLT PET.
Resumo:
PURPOSE: 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT), a cell proliferation positron emission tomography (PET) tracer, has been shown in numerous tumors to be more specific than 2-deoxy-2-[(18)F]fluoro-D: -glucose ([(18)F]FDG) but less sensitive. We studied the capacity of a nontoxic concentration of 5-fluoro-2'-deoxyuridine (FdUrd), a thymidine synthesis inhibitor, to increase uptake of [(18)F]FLT in tumor xenografts. METHODS: The duration of the FdUrd effect in vivo on tumor cell cycling and thymidine analogue uptake was studied by varying FdUrd pretreatment timing and holding constant the timing of subsequent flow cytometry and 5-[(125)I]iodo-2'-deoxyuridine biodistribution measurements. In [(18)F]FLT studies, FdUrd pretreatment was generally performed 1 h before radiotracer injection. [(18)F]FLT biodistributions were measured 1 to 3 h after radiotracer injection of mice grafted with five different human tumors and pretreated or not with FdUrd and compared with [(18)F]FDG tumor uptake. Using microPET, the dynamic distribution of [(18)F]FLT was followed for 1.5 h in FdUrd pretreated mice. High-field T2-weighted magnetic resonance imaging (MRI) and histology were used comparatively in assessing tumor viability and proliferation. RESULTS: FdUrd induced an immediate increase in tumor uptake of 5-[(125)I]iodo-2'-deoxyuridine, that vanished after 6 h, as also confirmed by flow cytometry. Biodistribution measurements showed that FdUrd pretreatment increased [(18)F]FLT uptake in all tumors by factors of 3.2 to 7.8 compared with controls, while [(18)F]FDG tumor uptake was about fourfold and sixfold lower in breast cancers and lymphoma. Dynamic PET in FdUrd pretreated mice showed that [(18)F]FLT uptake in all tumors increased steadily up to 1.5 h. MRI showed a well-vascularized homogenous lymphoma with high [(18)F]FLT uptake, while in breast cancer, a central necrosis shown by MRI was inactive in PET, consistent with the histomorphological analysis. CONCLUSION: We showed a reliable and significant uptake increase of [(18)F]FLT in different tumor xenografts after low-dose FdUrd pretreatment. These results show promise for a clinical application of FdUrd aimed at increasing the sensitivity of [(18)F]FLT PET.
Resumo:
Effective treatment of ovarian cancer depends upon the early detection of the malignancy. Here, we report on the development of a new nanostructured immunosensor for early detection of cancer antigen 125 (CA-125). A gold electrode was modified with mercaptopropionic acid (MPA), and then consecutively conjugated with silica coated gold nanoparticles (AuNP@SiO2), CdSe quantum dots (QDs) and anti-CA-125 monoclonal antibody (mAb). The engineered MPA|AuNP@SiO2|QD|mAb immunosensor was characterised using transmission electron microscopy (TEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Successive conjugation of AuNP@SiO2, CdSe QD and anti-CA-125 mAb onto the gold electrode resulted in sensitive detection of CA-125 with a limit of detection (LOD) of 0.0016 U mL(-1) and a linear detection range (LDR) of 0-0.1 U mL(-1). Based on the high sensitivity and specificity of the immunosensor, we propose this highly stable and reproducible biosensor for the early detection of CA-125.