172 resultados para intrinsically multivariate prediction
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND AND PURPOSE: The study aims to assess the recanalization rate in acute ischemic stroke patients who received no revascularization therapy, intravenous thrombolysis, and endovascular treatment, respectively, and to identify best clinical and imaging predictors of recanalization in each treatment group. METHODS: Clinical and imaging data were collected in 103 patients with acute ischemic stroke caused by anterior circulation arterial occlusion. We recorded demographics and vascular risk factors. We reviewed the noncontrast head computed tomographies to assess for hyperdense middle cerebral artery and its computed tomography density. We reviewed the computed tomography angiograms and the raw images to determine the site and degree of arterial occlusion, collateral score, clot burden score, and the density of the clot. Recanalization status was assessed on recanalization imaging using Thrombolysis in Myocardial Ischemia. Multivariate logistic regressions were utilized to determine the best predictors of outcome in each treatment group. RESULTS: Among the 103 study patients, 43 (42%) received intravenous thrombolysis, 34 (33%) received endovascular thrombolysis, and 26 (25%) did not receive any revascularization therapy. In the patients with intravenous thrombolysis or no revascularization therapy, recanalization of the vessel was more likely with intravenous thrombolysis (P = 0·046) and when M1/A1 was occluded (P = 0·001). In this subgroup of patients, clot burden score, cervical degree of stenosis (North American Symptomatic Carotid Endarterectomy Trial), and hyperlipidemia status added information to the aforementioned likelihood of recanalization at the patient level (P < 0·001). In patients with endovascular thrombolysis, recanalization of the vessel was more likely in the case of a higher computed tomography angiogram clot density (P = 0·012), and in this subgroup of patients gender added information to the likelihood of recanalization at the patient level (P = 0·044). CONCLUSION: The overall likelihood of recanalization was the highest in the endovascular group, and higher for intravenous thrombolysis compared with no revascularization therapy. However, our statistical models of recanalization for each individual patient indicate significant variability between treatment options, suggesting the need to include this prediction in the personalized treatment selection.
Resumo:
BACKGROUND: Recanalization in acute ischemic stroke with large-vessel occlusion is a potent indicator of good clinical outcome. OBJECTIVE: To identify easily available clinical and radiologic variables predicting recanalization at various occlusion sites. METHODS: All consecutive, acute stroke patients from the Acute STroke Registry and Analysis of Lausanne (2003-2011) who had a large-vessel occlusion on computed tomographic angiography (CTA) (< 12 h) were included. Recanalization status was assessed at 24 h (range: 12-48 h) with CTA, magnetic resonance angiography, or ultrasonography. Complete and partial recanalization (corresponding to the modified Treatment in Cerebral Ischemia scale 2-3) were grouped together. Patients were categorized according to occlusion site and treatment modality. RESULTS: Among 439 patients, 51% (224) showed complete or partial recanalization. In multivariate analysis, recanalization of any occlusion site was most strongly associated with endovascular treatment, including bridging therapy (odds ratio [OR] 7.1, 95% confidence interval [CI] 2.2-23.2), and less so with intravenous thrombolysis (OR 1.6, 95% CI 1.0-2.6) and recanalization treatments performed beyond guidelines (OR 2.6, 95% CI 1.2-5.7). Clot location (large vs. intermediate) and tandem pathology (the combination of intracranial occlusion and symptomatic extracranial stenosis) were other variables discriminating between recanalizers and non-recanalizers. For patients with intracranial occlusions, the variables significantly associated with recanalization after 24 h were: baseline National Institutes of Health Stroke Scale (NIHSS) (OR 1.04, 95% CI 1.02-1.1), Alberta Stroke Program Early CT Score (ASPECTS) on initial computed tomography (OR 1.2, 95% CI 1.1-1.3), and an altered level of consciousness (OR 0.2, 95% CI 0.1-0.5). CONCLUSIONS: Acute endovascular treatment is the single most important factor promoting recanalization in acute ischemic stroke. The presence of extracranial vessel stenosis or occlusion decreases recanalization rates. In patients with intracranial occlusions, higher NIHSS score and ASPECTS and normal vigilance facilitate recanalization. Clinical use of these predictors could influence recanalization strategies in individual patients.
Resumo:
OBJECTIVE: The goal of our study was to compare Doppler sonography and renal scintigraphy as tools for predicting the therapeutic response in patients after undergoing renal angioplasty. SUBJECTS AND METHODS. Seventy-four hypertensive patients underwent clinical examination, Doppler sonography, and renal scintigraphy before and after receiving captopril in preparation for renal revascularization. The patients were evaluated for the status of hypertension 3 months after the procedure. The predictive values of the findings of clinical examination, Doppler sonography, renal scintigraphy, and angiography were assessed. RESULTS: For prediction of a favorable therapeutic outcome, abnormal results from renal scintigraphy before and after captopril administration had a sensitivity of 58% and specificity of 57%. Findings of Doppler sonography had a sensitivity of 68% and specificity of 50% before captopril administration and a sensitivity of 81% and specificity of 32% after captopril administration. Significant predictors of a cure or reduction of hypertension after revascularization were low unilateral (p = 0.014) and bilateral resistive (p = 0.016) indexes on Doppler sonography before (p = 0.009) and after (p = 0.028) captopril administration. On multivariate analysis, the best predictors were a unilateral resistive index of less than 0.65 (odds ratio [OR] = 3.7) after captopril administration and a kidney longer than 93 mm (OR = 7.8). The two best combined criteria to predict the favorable therapeutic outcome were a bilateral resistive index of less than 0.75 before captopril administration combined with a unilateral resistive index of less than 0.70 after captopril administration (sensitivity, 76%; specificity, 58%) or a bilateral resistive index of less than 0.75 before captopril administration and a kidney measuring longer than 90 mm (sensitivity, 81%; specificity, 50%). CONCLUSION: Measurements of kidney length and unilateral and bilateral resistive indexes before and after captopril administration were useful in predicting the outcome after renal angioplasty. Renal scintigraphy had no significant predictive value.
Resumo:
BACKGROUND: High baseline levels of IP-10 predict a slower first phase decline in HCV RNA and a poor outcome following interferon/ribavirin therapy in patients with chronic hepatitis C. Several recent studies report that single nucleotide polymorphisms (SNPs) adjacent to IL28B predict spontaneous resolution of HCV infection and outcome of treatment among HCV genotype 1 infected patients. METHODS AND FINDINGS: In the present study, we correlated the occurrence of variants at three such SNPs (rs12979860, rs12980275, and rs8099917) with pretreatment plasma IP-10 and HCV RNA throughout therapy within a phase III treatment trial (HCV-DITTO) involving 253 Caucasian patients. The favorable SNP variants (CC, AA, and TT, respectively) were associated with lower baseline IP-10 (P = 0.02, P = 0.01, P = 0.04) and were less common among HCV genotype 1 infected patients than genotype 2/3 (P<0.0001, P<0.0001, and P = 0.01). Patients carrying favorable SNP genotypes had higher baseline viral load than those carrying unfavorable variants (P = 0.0013, P = 0.029, P = 0.0004 respectively). Among HCV genotype 1 infected carriers of the favorable C, A, or T alleles, IP-10 below 150 pg/mL significantly predicted a more pronounced reduction of HCV RNA from day 0 to 4 (first phase decline), which translated into increased rates of RVR (62%, 53%, and 39%) and SVR (85%, 76%, and 75% respectively) among homozygous carriers with baseline IP-10 below 150 pg/mL. In multivariate analyses of genotype 1-infected patients, baseline IP-10 and C genotype at rs12979860 independently predicted the first phase viral decline and RVR, which in turn independently predicted SVR. CONCLUSIONS: Concomitant assessment of pretreatment IP-10 and IL28B-related SNPs augments the prediction of the first phase decline in HCV RNA, RVR, and final therapeutic outcome.
Resumo:
We have identified new malaria vaccine candidates through the combination of bioinformatics prediction of stable protein domains in the Plasmodium falciparum genome, chemical synthesis of polypeptides, in vitro biological functional assays, and association of an antigen-specific antibody response with protection against clinical malaria. Within the predicted open reading frame of P. falciparum hypothetical protein PFF0165c, several segments with low hydrophobic amino acid content, which are likely to be intrinsically unstructured, were identified. The synthetic peptide corresponding to one such segment (P27A) was well recognized by sera and peripheral blood mononuclear cells of adults living in different regions where malaria is endemic. High antibody titers were induced in different strains of mice and in rabbits immunized with the polypeptide formulated with different adjuvants. These antibodies recognized native epitopes in P. falciparum-infected erythrocytes, formed distinct bands in Western blots, and were inhibitory in an in vitro antibody-dependent cellular inhibition parasite-growth assay. The immunological properties of P27A, together with its low polymorphism and association with clinical protection from malaria in humans, warrant its further development as a malaria vaccine candidate.
Resumo:
The predictive potential of six selected factors was assessed in 72 patients with primary myelodysplastic syndrome using univariate and multivariate logistic regression analysis of survival at 18 months. Factors were age (above median of 69 years), dysplastic features in the three myeloid bone marrow cell lineages, presence of chromosome defects, all metaphases abnormal, double or complex chromosome defects (C23), and a Bournemouth score of 2, 3, or 4 (B234). In the multivariate approach, B234 and C23 proved to be significantly associated with a reduction in the survival probability. The similarity of the regression coefficients associated with these two factors means that they have about the same weight. Consequently, the model was simplified by counting the number of factors (0, 1, or 2) present in each patient, thus generating a scoring system called the Lausanne-Bournemouth score (LB score). The LB score combines the well-recognized and easy-to-use Bournemouth score (B score) with the chromosome defect complexity, C23 constituting an additional indicator of patient outcome. The predicted risk of death within 18 months calculated from the model is as follows: 7.1% (confidence interval: 1.7-24.8) for patients with an LB score of 0, 60.1% (44.7-73.8) for an LB score of 1, and 96.8% (84.5-99.4) for an LB score of 2. The scoring system presented here has several interesting features. The LB score may improve the predictive value of the B score, as it is able to recognize two prognostic groups in the intermediate risk category of patients with B scores of 2 or 3. It has also the ability to identify two distinct prognostic subclasses among RAEB and possibly CMML patients. In addition to its above-described usefulness in the prognostic evaluation, the LB score may bring new insights into the understanding of evolution patterns in MDS. We used the combination of the B score and chromosome complexity to define four classes which may be considered four possible states of myelodysplasia and which describe two distinct evolutional pathways.
Resumo:
Sarcomas are heterogeneous and aggressive mesenchymal tumors. Histological grading has so far been the best predictor for metastasis-free survival, but it has several limitations, such as moderate reproducibility and poor prognostic value for some histological types. To improve patient grading, we performed genomic and expression profiling in a training set of 183 sarcomas and established a prognostic gene expression signature, complexity index in sarcomas (CINSARC), composed of 67 genes related to mitosis and chromosome management. In a multivariate analysis, CINSARC predicts metastasis outcome in the training set and in an independent 127 sarcomas validation set. It is superior to the Fédération Francaise des Centres de Lutte Contre le Cancer grading system in determining metastatic outcome for sarcoma patients. Furthermore, it also predicts outcome for gastrointestinal stromal tumors (GISTs), breast carcinomas and lymphomas. Application of the signature will permit more selective use of adjuvant therapies for people with sarcomas, leading to decreased iatrogenic morbidity and improved outcomes for such individuals.
Resumo:
BACKGROUND AND PURPOSE: To determine whether infarct core or penumbra is the more significant predictor of outcome in acute ischemic stroke, and whether the results are affected by the statistical method used. METHODS: Clinical and imaging data were collected in 165 patients with acute ischemic stroke. We reviewed the noncontrast head computed tomography (CT) to determine the Alberta Score Program Early CT score and assess for hyperdense middle cerebral artery. We reviewed CT-angiogram for site of occlusion and collateral flow score. From perfusion-CT, we calculated the volumes of infarct core and ischemic penumbra. Recanalization status was assessed on early follow-up imaging. Clinical data included age, several time points, National Institutes of Health Stroke Scale at admission, treatment type, and modified Rankin score at 90 days. Two multivariate regression analyses were conducted to determine which variables predicted outcome best. In the first analysis, we did not include recanalization status among the potential predicting variables. In the second, we included recanalization status and its interaction between perfusion-CT variables. RESULTS: Among the 165 study patients, 76 had a good outcome (modified Rankin score ≤2) and 89 had a poor outcome (modified Rankin score >2). In our first analysis, the most important predictors were age (P<0.001) and National Institutes of Health Stroke Scale at admission (P=0.001). The imaging variables were not important predictors of outcome (P>0.05). In the second analysis, when the recanalization status and its interaction with perfusion-CT variables were included, recanalization status and perfusion-CT penumbra volume became the significant predictors (P<0.001). CONCLUSIONS: Imaging prediction of tissue fate, more specifically imaging of the ischemic penumbra, matters only if recanalization can also be predicted.
Resumo:
ABSTRACT: BACKGROUND: Chest wall syndrome (CWS), the main cause of chest pain in primary care practice, is most often an exclusion diagnosis. We developed and evaluated a clinical prediction rule for CWS. METHODS: Data from a multicenter clinical cohort of consecutive primary care patients with chest pain were used (59 general practitioners, 672 patients). A final diagnosis was determined after 12 months of follow-up. We used the literature and bivariate analyses to identify candidate predictors, and multivariate logistic regression was used to develop a clinical prediction rule for CWS. We used data from a German cohort (n = 1212) for external validation. RESULTS: From bivariate analyses, we identified six variables characterizing CWS: thoracic pain (neither retrosternal nor oppressive), stabbing, well localized pain, no history of coronary heart disease, absence of general practitioner's concern, and pain reproducible by palpation. This last variable accounted for 2 points in the clinical prediction rule, the others for 1 point each; the total score ranged from 0 to 7 points. The area under the receiver operating characteristic (ROC) curve was 0.80 (95% confidence interval 0.76-0.83) in the derivation cohort (specificity: 89%; sensitivity: 45%; cut-off set at 6 points). Among all patients presenting CWS (n = 284), 71% (n = 201) had a pain reproducible by palpation and 45% (n = 127) were correctly diagnosed. For a subset (n = 43) of these correctly classified CWS patients, 65 additional investigations (30 electrocardiograms, 16 thoracic radiographies, 10 laboratory tests, eight specialist referrals, one thoracic computed tomography) had been performed to achieve diagnosis. False positives (n = 41) included three patients with stable angina (1.8% of all positives). External validation revealed the ROC curve to be 0.76 (95% confidence interval 0.73-0.79) with a sensitivity of 22% and a specificity of 93%. CONCLUSIONS: This CWS score offers a useful complement to the usual CWS exclusion diagnosing process. Indeed, for the 127 patients presenting CWS and correctly classified by our clinical prediction rule, 65 additional tests and exams could have been avoided. However, the reproduction of chest pain by palpation, the most important characteristic to diagnose CWS, is not pathognomonic.
Resumo:
PURPOSE: Positron emission tomography with (18)F-fluorodeoxyglucose (FDG-PET) was used to evaluate treatment response in patients with gastrointestinal stromal tumors (GIST) after administration of sunitinib, a multitargeted tyrosine kinase inhibitor, after imatinib failure. PATIENTS AND METHODS: Tumor metabolism was assessed with FDG-PET before and after the first 4 weeks of sunitinib therapy in 23 patients who received one to 12 cycles of sunitinib therapy (4 weeks of 50 mg/d, 2 weeks off). Treatment response was expressed as the percent change in maximal standardized uptake values (SUV). The primary end point of time to tumor progression was compared with early PET results on the basis of traditional Response Evaluation Criteria in Solid Tumors (RECIST) criteria. RESULTS: Progression-free survival (PFS) was correlated with early FDG-PET metabolic response (P < .0001). Using -25% and +25% thresholds for SUV variations from baseline, early FDG-PET response was stratified in metabolic partial response, metabolically stable disease, or metabolically progressive disease; median PFS rates were 29, 16, and 4 weeks, respectively. Similarly, when a single FDG-PET positive/negative was considered after 4 weeks of sunitinib, the median PFS was 29 weeks for SUVs less than 8 g/mL versus 4 weeks for SUVs of 8 g/mL or greater (P < .0001). None of the patients with metabolically progressive disease subsequently responded according to RECIST criteria. Multivariate analysis showed shorter PFS in patients who had higher residual SUVs (P < .0001), primary resistance to imatinib (P = .024), or nongastric GIST (P = .002), regardless of the mutational status of the KIT and PDGFRA genes. CONCLUSION: Week 4 FDG-PET is useful for early assessment of treatment response and for the prediction of clinical outcome. Thus, it offers opportunities to individualize and optimize patient therapy.
Resumo:
The usefulness of species distribution models (SDMs) in predicting impacts of climate change on biodiversity is difficult to assess because changes in species ranges may take decades or centuries to occur. One alternative way to evaluate the predictive ability of SDMs across time is to compare their predictions with data on past species distributions. We use data on plant distributions, fossil pollen and current and mid-Holocene climate to test the ability of SDMs to predict past climate-change impacts. We find that species showing little change in the estimated position of their realized niche, with resulting good model performance, tend to be dominant competitors for light. Different mechanisms appear to be responsible for among-species differences in model performance. Confidence in predictions of the impacts of climate change could be improved by selecting species with characteristics that suggest little change is expected in the relationships between species occurrence and climate patterns.
Resumo:
OBJECTIVE: To develop predictive models for early triage of burn patients based on hypersusceptibility to repeated infections. BACKGROUND: Infection remains a major cause of mortality and morbidity after severe trauma, demanding new strategies to combat infections. Models for infection prediction are lacking. METHODS: Secondary analysis of 459 burn patients (≥16 years old) with 20% or more total body surface area burns recruited from 6 US burn centers. We compared blood transcriptomes with a 180-hour cutoff on the injury-to-transcriptome interval of 47 patients (≤1 infection episode) to those of 66 hypersusceptible patients [multiple (≥2) infection episodes (MIE)]. We used LASSO regression to select biomarkers and multivariate logistic regression to built models, accuracy of which were assessed by area under receiver operating characteristic curve (AUROC) and cross-validation. RESULTS: Three predictive models were developed using covariates of (1) clinical characteristics; (2) expression profiles of 14 genomic probes; (3) combining (1) and (2). The genomic and clinical models were highly predictive of MIE status [AUROCGenomic = 0.946 (95% CI: 0.906-0.986); AUROCClinical = 0.864 (CI: 0.794-0.933); AUROCGenomic/AUROCClinical P = 0.044]. Combined model has an increased AUROCCombined of 0.967 (CI: 0.940-0.993) compared with the individual models (AUROCCombined/AUROCClinical P = 0.0069). Hypersusceptible patients show early alterations in immune-related signaling pathways, epigenetic modulation, and chromatin remodeling. CONCLUSIONS: Early triage of burn patients more susceptible to infections can be made using clinical characteristics and/or genomic signatures. Genomic signature suggests new insights into the pathophysiology of hypersusceptibility to infection may lead to novel potential therapeutic or prophylactic targets.
Resumo:
AIMS/HYPOTHESIS: Several susceptibility genes for type 2 diabetes have been discovered recently. Individually, these genes increase the disease risk only minimally. The goals of the present study were to determine, at the population level, the risk of diabetes in individuals who carry risk alleles within several susceptibility genes for the disease and the added value of this genetic information over the clinical predictors. METHODS: We constructed an additive genetic score using the most replicated single-nucleotide polymorphisms (SNPs) within 15 type 2 diabetes-susceptibility genes, weighting each SNP with its reported effect. We tested this score in the extensively phenotyped population-based cross-sectional CoLaus Study in Lausanne, Switzerland (n = 5,360), involving 356 diabetic individuals. RESULTS: The clinical predictors of prevalent diabetes were age, BMI, family history of diabetes, WHR, and triacylglycerol/HDL-cholesterol ratio. After adjustment for these variables, the risk of diabetes was 2.7 (95% CI 1.8-4.0, p = 0.000006) for individuals with a genetic score within the top quintile, compared with the bottom quintile. Adding the genetic score to the clinical covariates improved the area under the receiver operating characteristic curve slightly (from 0.86 to 0.87), yet significantly (p = 0.002). BMI was similar in these two extreme quintiles. CONCLUSIONS/INTERPRETATION: In this population, a simple weighted 15 SNP-based genetic score provides additional information over clinical predictors of prevalent diabetes. At this stage, however, the clinical benefit of this genetic information is limited.
Resumo:
Unraveling the effect of selection vs. drift on the evolution of quantitative traits is commonly achieved by one of two methods. Either one contrasts population differentiation estimates for genetic markers and quantitative traits (the Q(st)-F(st) contrast) or multivariate methods are used to study the covariance between sets of traits. In particular, many studies have focused on the genetic variance-covariance matrix (the G matrix). However, both drift and selection can cause changes in G. To understand their joint effects, we recently combined the two methods into a single test (accompanying article by Martin et al.), which we apply here to a network of 16 natural populations of the freshwater snail Galba truncatula. Using this new neutrality test, extended to hierarchical population structures, we studied the multivariate equivalent of the Q(st)-F(st) contrast for several life-history traits of G. truncatula. We found strong evidence of selection acting on multivariate phenotypes. Selection was homogeneous among populations within each habitat and heterogeneous between habitats. We found that the G matrices were relatively stable within each habitat, with proportionality between the among-populations (D) and the within-populations (G) covariance matrices. The effect of habitat heterogeneity is to break this proportionality because of selection for habitat-dependent optima. Individual-based simulations mimicking our empirical system confirmed that these patterns are expected under the selective regime inferred. We show that homogenizing selection can mimic some effect of drift on the G matrix (G and D almost proportional), but that incorporating information from molecular markers (multivariate Q(st)-F(st)) allows disentangling the two effects.