199 resultados para intraepithelial lymphocytes

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

NOD2 functions as an intracellular sensor for microbial pathogen and plays an important role in epithelial defense. The loss-of-function mutation of NOD2 is strongly associated with human Crohn's disease (CD). However, the mechanisms of how NOD2 maintains the intestinal homeostasis and regulates the susceptibility of CD are still unclear. Here we found that the numbers of intestinal intraepithelial lymphocytes (IELs) were reduced significantly in Nod2(-/-) mice and the residual IELs displayed reduced proliferation and increased apoptosis. Further study showed that NOD2 signaling maintained IELs via recognition of gut microbiota and IL-15 production. Notably, recovery of IELs by adoptive transfer could reduce the susceptibility of Nod2(-/-) mice to the 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Our results demonstrate that recognition of gut microbiota by NOD2 is important to maintain the homeostasis of IELs and provide a clue that may link NOD2 variation to the impaired innate immunity and higher susceptibility in CD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The murine gut epithelium contains a large population of thymus-derived intraepithelial lymphocytes (IELs), including both conventional CD4(+) and CD8alphabeta(+) T cells (expressing T-cell receptor alphabeta [TCRalphabeta]) and unconventional CD8alphaalpha(+) T cells (expressing either TCRalphabeta or TCRgammadelta). Whereas conventional IELs are widely accepted to arise from recirculation of activated CD4(+) and CD8alphabeta(+) T cells from the secondary lymphoid organs to the gut, the origin and developmental pathway of unconventional CD8alphaalpha IELs remain controversial. We show here that CD4-Cre-mediated inactivation of c-Myc, a broadly expressed transcription factor with a wide range of biologic activities, selectively impairs the development of CD8alphaalpha TCRalphabeta IELs. In the absence of c-Myc, CD4(-) CD8(-) TCRalphabeta(+) thymic precursors of CD8alphaalpha TCRalphabeta IELs are present but fail to develop on adoptive transfer in immunoincompetent hosts. Residual c-Myc-deficient CD8alphaalpha TCRalphabeta IEL display reduced proliferation and increased apoptosis, which correlate with significantly decreased expression of interleukin-15 receptor subunits and lower levels of the antiapoptotic protein Bcl-2. Transgenic overexpression of human BCL-2 resulted in a pronounced rescue of CD8alphaalpha TCRalphabeta IEL in c-Myc-deficient mice. Taken together, our data support a model in which c-Myc controls the development of CD8alphaalpha TCRalphabeta IELs from thymic precursors by regulating interleukin-15 receptor expression and consequently Bcl-2-dependent survival.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The engagement of inhibitory receptors specific for major histocompatibility complex class I (MHC-I) molecules educates natural killer (NK) cells, meaning the improvement of the response of activation receptors to subsequent stimulation. It is not known whether inhibitory MHC-I receptors educate only NK cells or whether they improve the responsiveness of all cell types, which express them. To address this issue, we analyzed the expression of inhibitory MHC-I receptors on intestinal intraepithelial lymphocytes (iIELs) and show that T-cell receptor (TCR)-αβ CD8αα iIELs express multiple inhibitory receptors specific for MHC-I molecules, including CD94/NKG2A, Ly49A, and Ly49G2. However, the presence of MHC-I ligand for these receptors did not improve the response of iIELs to activation via the TCR. The absence of iIEL education by MHC-I receptors was not related to a lack of inhibitory function of these receptors in iIELs and a failure of these receptors to couple to the TCR. Thus, unlike NK cells, iIELs do not undergo an MHC-I-guided education process. These data suggest that education is an NK cell-specific function of inhibitory MHC-I receptors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clonal deletion of autoreactive thymocytes is important for self-tolerance, but the intrathymic signals that induce clonal deletion have not been clearly identified. We now report that clonal deletion during negative selection required CD28-mediated costimulation of autoreactive thymocytes at the CD4(+)CD8(lo) intermediate stage of differentiation. Autoreactive thymocytes were prevented from undergoing clonal deletion by either a lack of CD28 costimulation or transgenic overexpression of the antiapoptotic factors Bcl-2 or Mcl-1, with surviving thymocytes differentiating into anergic CD4(-)CD8(-) double-negative thymocytes positive for the T cell antigen receptor αβ subtype (TCRαβ) that 'preferentially' migrated to the intestine, where they re-expressed CD8α and were sequestered as CD8αα(+) intraepithelial lymphocytes (IELs). Our study identifies costimulation by CD28 as the intrathymic signal required for clonal deletion and identifies CD8αα(+) IELs as the developmental fate of autoreactive thymocytes that survive negative selection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leishmaniasis is widely spread disease found in bath tropical and temperate regions but limited to the habitat of its sand fly vector. lt affects over 12 million people with 2 million new cases each year. As cutaneous leishmaniasis patients show varying levels of immunity to the disease after recovery, the development of a vaccine has much promise as a prevention strategy. Unfortunately however, existing anti-leishmanial vaccines are plagued by safety issues and have only ever shown limited efficacy .So, despite much effort, no effective vaccine is currently available. Recent studies suggest a correlation between the presence of Leishmania RNA virus (LRV) and the development of mucocutaneous leishmaniasis (MCL), which is characterised by the presence of secondary lesions in nasal and buccal mucosa, causing destructive and disfiguring facial lesions. Moreover, recent research has associated the viral presence to treatment fa ilure in patients. ln the first part of this work, we propose that these viral particles may serve as promising vaccine candidates due to their powerful TLR-3 antigenicity, launching an early cell-mediated attack on stimulated cells and thus eliminating their virulent complications. The second part of this work discusses a preliminary study on the lymphocyte immune response against Leishmania guyanensis infection. The lymphocyte response (and in particular, the raie of CDS+ T cells) is controversial and varies greatly between Leishmania species. Here, we illustrate the importance of a small CDS+ T cell subpopulation, expressing the CDSaa+ receptor. These intraepithelial lymphocytes are mainly present in the skin, vagina and intestinal tissue and are best known for their raie in the early immune response against pathogens. Similarly to traditional CDS+ cells, they secrete the tissue-destructive enzymes, perforin and granzyme, which can result in a hyper-inflammatory cutaneous lesion, raising a possibility for their raie in Leishmania infection. lndeed, our initial results in a murine mode( of Leishmania guyanensis infection suggest a pathogenic raie for CDSaa+ T cells. Further research into species-specific immune responses against the various Leishmania parasites is critical to realising the clinical potential of immunotherapy in the treatment and prevention of this disfiguring disease . -- La Leishmaniose est une maladie infectieuse causée par le parasite Leishmania. Elle est localisée dans les régions où son vecteur se reproduit, c'est-à-dire dans des régions tropicales ou tempérées. Cette pathologie affecte 12 millions des personnes dans le monde et 2 millions de nouveaux cas sont recensés chaque année. D'autres facteurs, tels la déforestation, les conditions d'hygiène ou encore l'accès limité aux médicaments, aggravent la pathologie et renforcent sa propagation. Les patients affectés par la leishmaniose et qui arrivent à en guérir, présentent une protection contre une réinfection. Pour cette raison, le développement d'un vaccin reste la meilleure solution pour combattre ce fléau. Mais, à ce jour, et malgré beaucoup d'efforts, aucun vaccin efficace n'a encore été développé. Un autre facteur responsable de l'aggravation de la pathologie et de la résistance de ces parasites aux drogues est un virus qui peut infecter certaines souches de Leishmania. Ce virus, appelé Leishmania RNA virus, peut induire une réponse inflammatoire exagérée, ce qui a comme résultat l'aggravation de la pathologie, la survie et la dissémination de ce parasite au sein de l'hôte infecté. Vu l'absence d'un vaccin contre ce parasite, Leishmania, nous proposons de développer un vaccin non pas contre le parasite lui- même mais contre l'agent qui provoque l'exacerbation de la pathologie, c'est-à-dire le virus. Dans cette étude, nous décrivons le développement d'un vaccin contre LRV, qui empêche le parasite d'induire des inflammations exagérées dans les souris. En d'autres mots, nous essayons de prévenir toutes les complications générées par cet hyperpathogène qu'est le LRV, en utilisant sa capside comme cible pour le développement d'un vaccin. Dans la deuxième partie de ce manuscrit, nous avons aussi étudié plus en détail la réponse immunitaire, et en particulier la réponse des lymphocytes T COB suite à l'infection du parasite Leishmania guyanensis porteur du LRV.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

T cell lymphoma of γδ T cell origin is a rare disease that mainly involves extranodal sites and shows aggressive clinical behavior. Here, we report a case of primary γδ T cell lymphoma of the lungs with epitheliotropism in the respiratory epithelium, a feature somewhat reminiscent of what is observed in enteropathy-associated T cell lymphoma. A 63-year-old man presented with chest pain and dyspnea on exertion, weight loss, and general weakness. On a positron emission tomography (PET) scan, multiple hypermetabolic lesions were found in both lungs. Microscopic examination of the wedge lung biopsy revealed nodular infiltration of monomorphic, medium- to large-sized atypical lymphocytes with round nuclei, coarse chromatin, and a variable amount of clear to eosinophilic cytoplasm. Of note, intraepithelial lymphocytosis by atypical lymphoid cells was observed in the respiratory epithelium within and around the nodule. Immunohistochemically, the tumor cells were CD3+, TCRβF1-, TCRγ+, CD5-, CD7+, CD20-, CD79a-, CD30-, CD4-, CD8-, CD10-, BCL6-, CD21-, CD56+, CD57-, and CD138-, and expressed cytotoxic molecules. Epstein-Barr virus (EBV) was not detected by an in situ hybridization assay for EBV-encoded RNA. Interestingly, CD103 was expressed by a subset of tumor cells, especially those infiltrating the epithelium. T cell clonality was detected by multiplex PCR analysis of TRG and TRD gene rearrangements. After 2 months of systemic chemotherapy, PET scan showed regression of the size and metabolic activity of the lesions. This case represents a unique γδ T cell lymphoma of the lungs showing epitheliotropism by CD103+ γδ T cells that is suggestive of tissue-resident γδ T cells as the cell of origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The RP protein (RPP) array approach immobilizes minute amounts of cell lysates or tissue protein extracts as distinct microspots on NC-coated slide. Subsequent detection with specific antibodies allows multiplexed quantification of proteins and their modifications at a scale that is beyond what traditional techniques can achieve. Cellular functions are the result of the coordinated action of signaling proteins assembled in macromolecular complexes. These signaling complexes are highly dynamic structures that change their composition with time and space to adapt to cell environment. Their comprehensive analysis requires until now relatively large amounts of cells (>5 x 10(7)) due to their low abundance and breakdown during isolation procedure. In this study, we combined small scale affinity capture of the T-cell receptor (TCR) and RPP arrays to follow TCR signaling complex assembly in human ex vivo isolated CD4 T-cells. Using this strategy, we report specific recruitment of signaling components to the TCR complex upon T-cell activation in as few as 0.5 million of cells. Second- to fourth-order TCR interacting proteins were accurately quantified, making this strategy specially well-suited to the analysis of membrane-associated signaling complexes in limited amounts of cells or tissues, e.g., ex vivo isolated cells or clinical specimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive immunity is initiated in T-cell zones of secondary lymphoid organs. These zones are organized in a rigid 3D network of fibroblastic reticular cells (FRCs) that are a rich cytokine source. In response to lymph-borne antigens, draining lymph nodes (LNs) expand several folds in size, but the fate and role of the FRC network during immune response is not fully understood. Here we show that T-cell responses are accompanied by the rapid activation and growth of FRCs, leading to an expanded but similarly organized network of T-zone FRCs that maintains its vital function for lymphocyte trafficking and survival. In addition, new FRC-rich environments were observed in the expanded medullary cords. FRCs are activated within hours after the onset of inflammation in the periphery. Surprisingly, FRC expansion depends mainly on trapping of naïve lymphocytes that is induced by both migratory and resident dendritic cells. Inflammatory signals are not required as homeostatic T-cell proliferation was sufficient to trigger FRC expansion. Activated lymphocytes are also dispensable for this process, but can enhance the later growth phase. Thus, this study documents the surprising plasticity as well as the complex regulation of FRC networks allowing the rapid LN hyperplasia that is critical for mounting efficient adaptive immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mucosal surfaces represent the main sites in which environmental microorganisms and antigens interact with the host. Sentinel cells, including epithelial cells, lumenal macrophages, and intraepithelial dendritic cells, continuously sense the environment and coordinate defenses for the protection of mucosal tissues. The mucosal epithelial cells are crucial actors in coordinating defenses. They sense the outside world and respond to environmental signals by releasing chemokines and cytokines that recruit inflammatory and immune cells to control potential infectious agents and to attract cells able to trigger immune responses. Among immune cells, dendritic cells (DC) play a key role in controlling adaptive immune responses, due to their capacity to internalize foreign materials and to present antigens to naive T and B lymphocytes, locally or in draining organized lymphoid tissues. Immune cells recruited in epithelial tissues can, in turn, act upon the epithelial cells and change their phenotype in a process referred to as epithelial metaplasia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated whether mouse mammary tumor virus (MMTV) favors preactivated or naive B cells as targets for efficient infection. We have demonstrated previously that MMTV activates B cells upon infection. Here, we show that polyclonal activation of B cells leads instead to lower infection levels and attenuated superantigen-specific T-cell responses in vivo. This indicates that naive small resting B cells are the major targets of MMTV infection and that the activation induced by MMTV is sufficient to allow efficient infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TLR are evolutionarily conserved molecules that play a key role in the initiation of innate antimicrobial immune responses. Through their influence on dendritic cell maturation, these receptors are also thought to indirectly shape the adaptive immune response. However, no data are currently available regarding both TLR expression and function in human CD8+ T cell subsets. We report that a subpopulation of CD8+ T cells, i.e., effector, but neither naive nor central memory cells, constitutively expresses TLR3. Moreover, the ligation of the receptor by a specific agonist in TLR3-expressing CD8+ T cells increased IFN-gamma secretion induced by TCR-dependent and -independent stimulation, without affecting proliferation or specific cytolytic activity. These results thereby suggest that TLR3 ligands can not only indirectly influence the adaptive immune response through modulation of dendritic cell activation, but also directly increase IFN-gamma production by Ag-specific CD8+ T cells. Altogether, the present work might open new perspectives for the use of TLR ligands as adjuvants for immunotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MAGE-encoded antigens, which are expressed by tumors of many histological types but not in normal tissues, are suitable candidates for vaccine-based immunotherapy of cancers. Thus far, however, T-cell responses to MAGE antigens have been detected only occasionally in cancer patients. In contrast, by using HLA/peptide fluorescent tetramers, we have observed recently that CD8(+) T cells specific for peptide MAGE-A10(254-262) can be detected frequently in peptide-stimulated peripheral blood mononuclear cells from HLA-A2-expressing melanoma patients and healthy donors. On the basis of these results, antitumoral vaccination trials using peptide MAGE-A10(254-262) have been implemented recently. In the present study, we have characterized MAGE-A10(254-262)-specific CD8(+) T cells in polyclonal cultures and at the clonal level. The results indicate that the repertoire of MAGE-A10(254-262)-specific CD8(+) T cells is diverse both in terms of clonal composition, efficiency of peptide recognition, and tumor-specific lytic activity. Importantly, only CD8(+) T cells able to recognize the antigenic peptide with high efficiency are able to lyse MAGE-A10-expressing tumor cells. Under defined experimental conditions, the tetramer staining intensity exhibited by MAGE-A10(254-262)-specific CD8(+) T cells correlates with efficiency of peptide recognition so that "high" and "low" avidity cells can be separated by FACS. Altogether, the data reported here provide evidence for functional diversity of MAGE-A10(254-262)-specific T cells and will be instrumental for the monitoring of peptide MAGE-A10(254-262)-based clinical trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To report a case of conjunctival intraepithelial neoplasia in a patient treated with tacrolimus after liver transplantation for hepatic carcinoma. METHODS: Description of the initial clinical presentation of a patient, tumor management, and 15-month follow-up. RESULTS: A 70-year-old man presented with a conjunctival intraepithelial neoplasia that developed on the site of a preexisting pterygium. After total surgical removal and additional application of mitomycin, local tumor control was achieved. CONCLUSIONS: We describe a case of intraepithelial conjunctival neoplasia in a patient treated with systemic tacrolimus. Local tumor control was achieved at 15 months after appropriate surgical management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To demonstrate that antibody-guided targeting of antigenic MHC class I-peptide tetramer on tumor cells can render them susceptible to lysis by relevant cytotoxic T lymphocytes (CTL), biotinylated HLA-A*0201/Flu matrix peptide complexes were tetramerized on streptavidin molecules previously coupled to Fab' fragments from monoclonal antibodies (mAb) specific for cell surface markers such as carcinoembryonic antigen (CEA), ErbB-2 or CD20. Flow cytometry analysis showed that coating of the HLA-A2-peptide complexes on the four HLA-A2-negative human cancer lines tested (including a CEA-positive colon carcinoma, an ErbB-2(+) breast carcinoma and two CD20(+) B lymphomas) was entirely dependent upon the specificity of the conjugated antibody fragments. More importantly, HLA-A2-restricted Flu matrix peptide-specific CTL were then found to lyse specifically and efficiently the MHC-coated target cells. These results open the way to the development of new immunotherapy strategies based on antibody targeting of MHC class I-peptide complexes.