6 resultados para internal state coupling

em Université de Lausanne, Switzerland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reproductive and worker division of labour (DOL) is a hallmark of social insect societies. Despite a long-standing interest in worker DOL, the molecular mechanisms regulating this process have only been investigated in detail in honey bees, and little is known about the regulatory mechanisms operating in other social insects. In the fire ant Solenopsis invicta, one of the most studied ant species, workers are permanently sterile and the tasks performed are modulated by the worker's internal state (age and size) and the outside environment (social environment), which potentially includes the effect of the queen presence through chemical communication via pheromones. However, the molecular mechanisms underpinning these processes are unknown. Using a whole-genome microarray platform, we characterized the molecular basis for worker DOL and we explored how a drastic change in the social environment (i.e. the sudden loss of the queen) affects global gene expression patterns of worker ants. We identified numerous genes differentially expressed between foraging and nonforaging workers in queenright colonies. With a few exceptions, these genes appear to be distinct from those involved in DOL in bees and wasps. Interestingly, after the queen was removed, foraging workers were no longer distinct from nonforaging workers at the transcriptomic level. Furthermore, few expression differences were detected between queenright and queenless workers when we did not consider the task performed. Thus, the social condition of the colony (queenless vs. queenright) appears to impact the molecular pathways underlying worker task performance, providing strong evidence for social regulation of DOL in S. invicta.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High-resolution ac susceptibility and thermal conductivity measurement on Cu2Te2O5X2 (X=Br,Cl) single crystals are reported. For Br-sample, sample dependence prevents one from distinguishing between possibilities of magnetically ordered and spin-singlet ground states. In Cl-sample a three-dimensional transition at 18.5 K is accompanied by almost isotropic behavior of susceptibility and almost switching behavior of thermal conductivity. Thermal conductivity studies suggest the presence of a tremendous spin-lattice coupling characterizing Cl- but not Br-sample. Below the transition Cl-sample is in a complex magnetic state involving AF order but also the elements consistent with the presence of a gap in the excitation spectrum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the standard tools used to understand the processes shaping trait evolution along the branches of a phylogenetic tree is the reconstruction of ancestral states (Pagel 1999). The purpose is to estimate the values of the trait of interest for every internal node of a phylogenetic tree based on the trait values of the extant species, a topology and, depending on the method used, branch lengths and a model of trait evolution (Ronquist 2004). This approach has been used in a variety of contexts such as biogeography (e.g., Nepokroeff et al. 2003, Blackburn 2008), ecological niche evolution (e.g., Smith and Beaulieu 2009, Evans et al. 2009) and metabolic pathway evolution (e.g., Gabaldón 2003, Christin et al. 2008). Investigations of the factors affecting the accuracy with which ancestral character states can be reconstructed have focused in particular on the choice of statistical framework (Ekman et al. 2008) and the selection of the best model of evolution (Cunningham et al. 1998, Mooers et al. 1999). However, other potential biases affecting these methods, such as the effect of tree shape (Mooers 2004), taxon sampling (Salisbury and Kim 2001) as well as reconstructing traits involved in species diversification (Goldberg and Igić 2008), have also received specific attention. Most of these studies conclude that ancestral character states reconstruction is still not perfect, and that further developments are necessary to improve its accuracy (e.g., Christin et al. 2010). Here, we examine how different estimations of branch lengths affect the accuracy of ancestral character state reconstruction. In particular, we tested the effect of using time-calibrated versus molecular branch lengths and provide guidelines to select the most appropriate branch lengths to reconstruct the ancestral state of a trait.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human brain displays heterogeneous organization in both structure and function. Here we develop a method to characterize brain regions and networks in terms of information-theoretic measures. We look at how these measures scale when larger spatial regions as well as larger connectome sub-networks are considered. This framework is applied to human brain fMRI recordings of resting-state activity and DSI-inferred structural connectivity. We find that strong functional coupling across large spatial distances distinguishes functional hubs from unimodal low-level areas, and that this long-range functional coupling correlates with structural long-range efficiency on the connectome. We also find a set of connectome regions that are both internally integrated and coupled to the rest of the brain, and which resemble previously reported resting-state networks. Finally, we argue that information-theoretic measures are useful for characterizing the functional organization of the brain at multiple scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac hypertrophy is associated with alterations in cardiomyocyte excitation-contraction coupling (ECC) and Ca(2+) handling. Chronic elevation of plasma angiotensin II (Ang II) is a major determinant in the pathogenesis of cardiac hypertrophy and congestive heart failure. However, the molecular mechanisms by which the direct actions of Ang II on cardiomyocytes contribute to ECC remodeling are not precisely known. This question was addressed using cardiac myocytes isolated from transgenic (TG1306/1R [TG]) mice exhibiting cardiac specific overexpression of angiotensinogen, which develop Ang II-mediated cardiac hypertrophy in the absence of hemodynamic overload. Electrophysiological techniques, photolysis of caged Ca(2+) and confocal Ca(2+) imaging were used to examine ECC remodeling at early ( approximately 20 weeks of age) and late ( approximately 60 weeks of age) time points during the development of cardiac dysfunction. In young TG mice, increased cardiac Ang II levels induced a hypertrophic response in cardiomyocyte, which was accompanied by an adaptive change of Ca(2+) signaling, specifically an upregulation of the Na(+)/Ca(2+) exchanger-mediated Ca(2+) transport. In contrast, maladaptation was evident in older TG mice, as suggested by reduced sarcoplasmic reticulum Ca(2+) content resulting from a shift in the ratio of plasmalemmal Ca(2+) removal and sarcoplasmic reticulum Ca(2+) uptake. This was associated with a conserved ECC gain, consistent with a state of hypersensitivity in Ca(2+)-induced Ca(2+) release. Together, our data suggest that chronic elevation of cardiac Ang II levels significantly alters cardiomyocyte ECC in the long term, and thereby contractility, independently of hemodynamic overload and arterial hypertension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Neuronal oscillations have been the focus of increasing interest in the neuroscientific community, in part because they have been considered as a possible integrating mechanism through which internal states can influence stimulus processing in a top-down way (Engel et al., 2001). Moreover, increasing evidence indicates that oscillations in different frequency bands interact with one other through coupling mechanisms (Jensen and Colgin, 2007). The existence and the importance of these cross-frequency couplings during various tasks have been verified by recent studies (Canolty et al., 2006; Lakatos et al., 2007). In this study, we measure the strength and directionality of two types of couplings - phase-amplitude couplings and phase-phase couplings - between various bands in EEG data recorded during an illusory contour experiment that were identified using a recently-proposed adaptive frequency tracking algorithm (Van Zaen et al., 2010). Methods: The data used in this study have been taken from a previously published study examining the spatiotemporal mechanisms of illusory contour processing (Murray et al., 2002). The EEG in the present study were from a subset of nine subjects. Each stimulus was composed of 'pac-man' inducers presented in two orientations: IC, when an illusory contour was present, and NC, when no contour could be detected. The signals recorded by the electrodes P2, P4, P6, PO4 and PO6 were averaged, and filtered into the following bands: 4-8Hz, 8-12Hz, 15-25Hz, 35-45Hz, 45-55Hz, 55-65Hz and 65-75Hz. An adaptive frequency tracking algorithm (Van Zaen et al., 2010) was then applied in each band in order to extract the main oscillation and estimate its frequency. This additional step ensures that clean phase information is obtained when taking the Hilbert transform. The frequency estimated by the tracker was averaged over sliding windows and then used to compare the two conditions. Two types of cross-frequency couplings were considered: phase-amplitude couplings and phase-phase couplings. Both types were measured with the phase locking value (PLV, Lachaux et al., 1999) over sliding windows. The phase-amplitude couplings were computed with the phase of the low frequency oscillation and the phase of the amplitude of the high frequency one. Different coupling coefficients were used when measuring phase-phase couplings in order to estimate different m:n synchronizations (4:3, 3:2, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1 and 9:1) and to take into account the frequency differences across bands. Moreover, the direction of coupling was estimated with a directionality index (Bahraminasab et al., 2008). Finally, the two conditions IC and NC were compared with ANOVAs with 'subject' as a random effect and 'condition' as a fixed effect. Before computing the statistical tests, the PLV values were transformed into approximately normal variables (Penny et al., 2008). Results: When comparing the mean estimated frequency across conditions, a significant difference was found only in the 4-8Hz band, such that the frequency within this band was significantly higher for IC than NC stimuli starting at ~250ms post-stimulus onset (Fig. 1; solid line shows IC and dashed line NC). Significant differences in phase-amplitude couplings were obtained only when the 4-8 Hz band was taken as the low frequency band. Moreover, in all significant situations, the coupling strength is higher for the NC than IC condition. An example of significant difference between conditions is shown in Fig. 2 for the phase-amplitude coupling between the 4-8Hz and 55-65Hz bands (p-value in top panel and mean PLV values in the bottom panel). A decrease in coupling strength was observed shortly after stimulus onset for both conditions and was greater for the condition IC. This phenomenon was observed with all other frequency bands. The results obtained for the phase-phase couplings were more complex. As for the phase-amplitude couplings, all significant differences were obtained when the 4-8Hz band was considered as the low frequency band. The stimulus condition exhibiting the higher coupling strength depended on the ratio of the coupling coefficients. When this ratio was small, the IC condition exhibited the higher phase-phase coupling strength. When this ratio was large, the NC condition exhibited the higher coupling strength. Fig. 3 shows the phase-phase couplings between the 4-8Hz and 35-45Hz bands for the coupling coefficient 6:1, and the coupling strength was significantly higher for the IC than NC condition. By contrast, for the coupling coefficient 9:1 the NC condition gave the higher coupling strength (Fig. 4). Control analyses verified that it is not a consequence of the frequency difference between the two conditions in the 4-8Hz band. The directionality measures indicated a transfer of information from the low frequency components towards the high frequency ones. Conclusions: Adaptive tracking is a feasible method for EEG analyses, revealing information both about stimulus-related differences and coupling patterns across frequencies. Theta oscillations play a central role in illusory shape processing and more generally in visual processing. The presence vs. absence of illusory shapes was paralleled by faster theta oscillations. Phase-amplitude couplings were decreased more for IC than NC and might be due to a resetting mechanism. The complex patterns in phase-phase coupling between theta and beta/gamma suggest that the contribution of these oscillations to visual binding and stimulus processing are not as straightforward as conventionally held. Causality analyses further suggest that theta oscillations drive beta/gamma oscillations (see also Schroeder and Lakatos, 2009). The present findings highlight the need for applying more sophisticated signal analyses in order to establish a fuller understanding of the functional role of neural oscillations.