3 resultados para insect bite

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kin selection is the key to understanding the evolution of cooperation in insect societies. However, kin selection also predicts potential kin conflict, and understanding how these conflicts are resolved is a major goal of current research on social insects

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent large scale studies questioning the presence of intracellular bacteria of the Chlamydiales order in ticks and fleas revealed that arthropods, similarly to mammals, reptiles, birds or fishes, can be colonized by Chlamydia-related bacteria with a predominant representation of the Rhabdochlamydiaceae and Parachlamydiaceae families. We thus investigated the permissivity of two insect cell lines towards Waddlia chondrophila, Estrella lausannensis and Parachlamydia acanthamoebae, three bacteria representative of three distinct families within the Chlamydiales order, all documented in ticks and/or in other arthropods. We demonstrated that W. chondrophila and E. lausannensis are able to very efficiently multiply in these insect cell lines. E. lausannensis however induced a rapid cytopathic effect, which somehow restricted its replication. P. acanthamoebae was not able to grow in these cell lines even if inclusions containing a few replicating bacteria could occasionally be observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During their life cycle, plants are typically confronted by simultaneous biotic and abiotic stresses. Low inorganic phosphate (Pi) is one of the most common nutrient deficiencies limiting plant growth in natural and agricultural ecosystems, while insect herbivory accounts for major losses in plant productivity and impacts ecological and evolutionary changes in plant populations. Here, we report that plants experiencing Pi deficiency induce the jasmonic acid (JA) pathway and enhance their defense against insect herbivory. Pi-deficient Arabidopsis (Arabidopsis thaliana) showed enhanced synthesis of JA and the bioactive conjugate JA-isoleucine, as well as activation of the JA signaling pathway, in both shoots and roots of wild-type plants and in shoots of the Pi-deficient mutant pho1 The kinetics of the induction of the JA signaling pathway by Pi deficiency was influenced by PHOSPHATE STARVATION RESPONSE1, the main transcription factor regulating the expression of Pi starvation-induced genes. Phenotypes of the pho1 mutant typically associated with Pi deficiency, such as high shoot anthocyanin levels and poor shoot growth, were significantly attenuated by blocking the JA biosynthesis or signaling pathway. Wounded pho1 leaves hyperaccumulated JA/JA-isoleucine in comparison with the wild type. The pho1 mutant also showed an increased resistance against the generalist herbivore Spodoptera littoralis that was attenuated in JA biosynthesis and signaling mutants. Pi deficiency also triggered increased resistance to S. littoralis in wild-type Arabidopsis as well as tomato (Solanum lycopersicum) and Nicotiana benthamiana, revealing that the link between Pi deficiency and enhanced herbivory resistance is conserved in a diversity of plants, including crops.