62 resultados para industrial enzymes
em Université de Lausanne, Switzerland
Resumo:
50 years ago, the introduction of penicillin, followed by many other antibacterial agents, represented an often underestimated medical revolution. Indeed, until that time, bacterial infections were the prime cause of mortality, especially in children and elderly patients. The discovery of numerous new substances and their development on an industrial scale gave us the illusion that bacterial infections were all but vanquished. However, the widespread and sometimes uncontrolled use of these agents has led to the selection of bacteria resistant to practically all available antibiotics. Bacteria utilize three main resistance strategies: (1) modification of their permeability, (2) modification of target, and (3) modification of the antibiotic. Bacteria modify their permeability either by becoming impermeable to antibiotics, or by actively excreting the drug accumulated in the cell. As an alternative, they can modify the structure of the antibiotic's molecular target--usually an essential metabolic enzyme of the bacterium--and thus escape the drug's toxic effect. Lastly, they can produce enzymes capable of modifying and directly inactivating antibiotics. In addition, bacteria have evolved extremely efficient genetic transfer systems capable of exchanging and accumulating resistance genes. Some pathogens, such as methicillin-resistant Staphylococcus aureus and multiresistant Mycobacterium tuberculosis, have become resistant to almost all available antibiotics and there are only one or two substances still active against such organisms. Antibiotics are very precious drugs which must be administered to patients who need them. On the other hand, the development of resistance must be kept under control by a better comprehension of its mechanisms and modes of transmission and by abiding by the fundamental rules of anti-infectious chemotherapy, i.e.: (1) choose the most efficient antibiotic according to clinical and local epidemiological data, (2) target the bacteria according to the microbiological data at hand, and (3) administer the antibiotic in an adequate dose which will leave the pathogen no chance to develop resistance.
Resumo:
The Layout of My Thesis This thesis contains three chapters in Industrial Organization that build on the work outlined above. The first two chapters combine leniency programs with multimarket contact and provide a thorough analysis of the potential effects of Amnesty Plus and Penalty Plus. The third chapter puts the whole discussion on leniency programs into perspective by examining other enforcement tools available to an antitrust authority. The main argument in that last chapter is that a specific instrument can only be as effective as the policy in which it is embedded. It is therefore important for an antitrust authority to know how it best accompanies the introduction or modification of a policy instrument that helps deterrence. INTRODUCTION Chapter 1 examines the efféct of Amnesty Plus and Penalty Plus on the incentives of firms to report cartel activities. The main question is whether the inclusion of these policies in a leniency program undermine the effectiveness of the latter by discouraging the firms to apply for amnesty. The model is static and focus on the ex post incentives of firms to desist from collusion. The results suggest that, because Amnesty Plus and Penalty Plus encourage the reporting of a second cartel after a first detection, a firm, anticipating this, may be reluctant to seek leniency and to report in the first place. However, the effect may also go in the opposite direction, and Amnesty Plus and Penalty Plus may encourage the simultaneous reporting of two cartels. Chapter 2 takes this idea further to the stage of cartel formation. This chapter provides a complete characterization of the potential anticompetitive and procompetitive effects of Amnesty Plus in a infinitely repeated game framework when the firms use their multimarket contact to harshen punishment. I suggest a clear-cut policy rule that prevents potential adverse effects and thereby show that, if policy makers follow this rule, a leniency program with Amnesty Plus performs better than one without. Chapter 3 characterizes the socially optimal enforcement effort of an antitrust authority and shows how this effort changes with the introduction or modification of specific policy instruments. The intuition is that the policy instrument may increase the marginal benefit of conducting investigations. If this effect is strong enough, a more rigorous detection policy becomes socially desirable.
Resumo:
OBJECTIVE: Lipids stored in adipose tissue can originate from dietary lipids or from de novo lipogenesis (DNL) from carbohydrates. Whether DNL is abnormal in adipose tissue of overweight individuals remains unknown. The present study was undertaken to assess the effect of carbohydrate overfeeding on glucose-induced whole body DNL and adipose tissue lipogenic gene expression in lean and overweight humans. DESIGN: Prospective, cross-over study. SUBJECTS AND METHODS: A total of 11 lean (five male, six female, mean BMI 21.0+/-0.5 kg/m(2)) and eight overweight (four males, four females, mean BMI 30.1+/-0.6 kg/m(2)) volunteers were studied on two occasions. On one occasion, they received an isoenergetic diet containing 50% carbohydrate for 4 days prior to testing; on the other, they received a hyperenergetic diet (175% energy requirements) containing 71% carbohydrates. After each period of 4 days of controlled diet, they were studied over 6 h after having received 3.25 g glucose/kg fat free mass. Whole body glucose oxidation and net DNL were monitored by means of indirect calorimetry. An adipose tissue biopsy was obtained at the end of this 6-h period and the levels of SREBP-1c, acetyl CoA carboxylase, and fatty acid synthase mRNA were measured by real-time PCR. RESULTS: After isocaloric feeding, whole body net DNL amounted to 35+/-9 mg/kg fat free mass/5 h in lean subjects and to 49+/-3 mg/kg fat free mass/5 h in overweight subjects over the 5 h following glucose ingestion. These figures increased (P<0.001) to 156+/-21 mg/kg fat free mass/5 h in lean and 64+/-11 mg/kg fat free mass/5 h (P<0.05 vs lean) in overweight subjects after carbohydrate overfeeding. Whole body DNL after overfeeding was lower (P<0.001) and glycogen synthesis was higher (P<0.001) in overweight than in normal subjects. Adipose tissue SREBP-1c mRNA increased by 25% in overweight and by 43% in lean subjects (P<0.05) after carbohydrate overfeeding, whereas fatty acid synthase mRNA increased by 66 and 84% (P<0.05). CONCLUSION: Whole body net DNL is not increased during carbohydrate overfeeding in overweight individuals. Stimulation of adipose lipogenic enzymes is also not higher in overweight subjects. Carbohydrate overfeeding does not stimulate whole body net DNL nor expression of lipogenic enzymes in adipose tissue to a larger extent in overweight than lean subjects.
Resumo:
The hydrogen and oxygen isotopes of water and the carbon isotope composition of dissolved inorganic carbon (DIC) from different aquifers at an industrial site, highly contaminated by organic pollutants representing residues of the former gas production, have been used as natural tracers to characterize the hydrologic system. On the basis of their stable isotope compositions as well as the seasonal variations, different groups of waters (precipitation, surface waters, groundwaters and mineral waters) as well as seasonably variable processes of mixing between these waters can clearly be distinguished. In addition, reservoir effects and infiltration rates can be estimated. In the northern part of the site an influence of uprising mineral waters within the Quaternary aquifers, presumably along a fault zone, can be recognized. Marginal infiltration from the Neckar River in the cast and surface water infiltration adjacent to a steep hill on the western edge of the site with an infiltration rate of about one month can also be resolved through the seasonal variation. Quaternary aquifers closer to the centre of the site show no seasonal variations, except for one borehole close to a former mill channel and another borehole adjacent to a rain water channel. Distinct carbon isotope compositions and concentrations of DIC for these different groups of waters reflect variable influence of different components of the natural carbon cycle: dissolution of marine carbonates in the mineral waters, biogenic, soil-derived CO2 in ground- and surface waters, as well as additional influence of atmospheric CO2 for the surface waters. Many Quaternary aquifer waters have, however, distinctly lower delta(13)C(DIC) values and higher DIC concentrations compared to those expected for natural waters. Given the location of contaminated groundwaters at this site but also in the industrially well-developed valley outside of this site, the most likely source for the low C-13(DIC) values is a biodegradation of anthropogenic organic substances, in particular the tar oils at the site.
Resumo:
Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers used as renewable, biodegradable plastics. PHA production in plants may be a way to reduce industrial PHA production costs. We recently demonstrated a promising level of peroxisomal PHA production in the high biomass crop species sugarcane. However, further production strategies are needed to boost PHA accumulation closer to commercial targets. Through exogenous fatty acid feeding of Arabidopsis thaliana plants that contain peroxisome-targeted PhaA, PhaB and PhaC enzymes from Cupriavidus necator, we show here that the availability of substrates derived from the β-oxidation cycle limits peroxisomal polyhydroxybutyrate (PHB) biosynthesis. Knockdown of peroxisomal citrate synthase activity using artificial microRNA increased PHB production levels approximately threefold. This work demonstrates that reduction of peroxisomal citrate synthase activity may be a valid metabolic engineering strategy for increasing PHA production in other plant species.
Resumo:
This study shows the efficiency of passive sampling to reveal industrial and agricultural pollution trends. Two practical applications for nonpolar and polar contaminants are presented. Low-density polyethylene (LDPE) samplers were deployed for one year in the Venoge River (VD) to monitor indicator PCBs (iPCBs, IUPAC nos. 28, 52, 101, 138, 153 and 180). The results showed that the impact of PCB emissions into the river is higher in summer than in other seasons due to the low flow rate of the river during this period. P,olar organic chemical integrative samplers (POCIS) were deployed for 4 months in the Sion-Riddes canal (VS) to investigate herbicides (terbuthylazine, diuron and linuron). Desisopropylatrazine-d5 (DIA-d5) was tested as a performance reference compound (PRC) to estimate aqueous concentration. The results showed an increase of water contamination due to the studied agricultural area. The maximal contamination was observed in April and corresponds to the period of herbicide application on the crops.
Resumo:
Les membres de l'ordre des Chlamydiales peuvent infecter un choix étendu d'animaux, insectes, et protistes. Comme toutes bactéries intracellulaires obligatoires, les Chlamydiales ont besoin d'une cellule hôte pour se répliquer. Chaque fois qu'une cellule est infectée une lutte commence entre les mécanismes de défense de la cellule et l'arsenal de facteurs de virulence de la bactérie. Dans cette thèse nous nous sommes intéressés à déterminer le rôle de deux mécanismes de l'immunité innée de l'hôte. En premier, nous avons étudié les NADPH oxidases, une source de molécules superoxydantes (MSO). Leur rôle dans la restriction de la réplication de Waddlia chondrophila et Estrella iausannensis a été étudié dans l'organisme modèle Dictyostelium discoideum et les macrophages humains. Différentes protéines Nox étaient nécessaires pour contrôler la réplication de W. chondrophila ou E. Iausannensis. De plus, nous avons déterminé que parmi les Chlamydiales, cinq espèces possédaient une catalase. Cette enzyme peut dégrader l'eau oxygénée, une MSO. L'activité de la catalase a été démontrée in vitro et dans les corps élémentaires. Avant de pouvoir étudier le rôle de NOX2 dans des macrophages infectés avec E. Iausannensis, nous avons dû établir la capacité de la bactérie à se répliquer clans les macrophages avec son trafic intracellulaire. Le deuxième mécanisme d'immunité innée que nous avons étudié est l'autophagie. Dans les cellules infectées l'autophagie permet de digérer les bactéries envahissantes. Deux protéines de la voie autophagique (Atg1 et Atg8) jouent un rôle dans la restriction de la croissance de W. chondrophila dans D. discoideum. D'avantage d'études sur l'immunité innée et les bactéries apparentés aux Chlamydia sont indispensables, car les réponses paraissent être spécifiques pour chaque espèce. - Members of the Chlamydiales order are able to infect a large variety of animals, insects, and protists. These obligate intracellular bacteria require a host cell for replication. Each time a cell is infected a struggle begins between the virulence arsenal of the bacteria and the defense mechanisms activated by the host. Each bacterial species will exhibit a selection of virulence factors that will allow it to overcome the defense of the host in some species, but not others. In this thesis we were interested in dissecting the role of two host innate immunity mechanisms. First we determined the role of NADPH oxidases, a source of reactive oxygen species (ROS), in restricting replication of Waddlia chondrophila and EstreHa lausannensis in the model organism Dictyostelium discoideum and human macrophages. Different Nox proteins were required to restrict growth of W. chondrophila and E. lausannensis. Additionally, we determined that five Chlamydia- related bacterial species encode for catalase, an enzyme that is able to degrade hydrogen peroxide, a ROS. The activity of the catalase was demonstrated in vitro and in elementary bodies. To study the role of NOX2 in macrophages for E. lausannensis we first had to determine the ability of E. lausannensis to grow in macrophages. Besides demonstrating its replication we also determined the intracellular trafficking of E. lausannensis. The second innate immunity mechanism studied was autophagy. Through autophagy bacteria can be targeted to degradation. Atg1 and Atg8, two autophagic proteins appeared restrict W. chondrophila replication in D. discoideum. More studies on innate immunity and Chlamydia-related bacteria are required. It appears that the responses to innate immunity are species specific and it will be difficult to generalize data obtained for W. chondrophila to the Chlamydiales order.
Resumo:
In this review, intratumoral drug disposition will be integrated into the wide range of resistance mechanisms to anticancer agents with particular emphasis on targeted protein kinase inhibitors. Six rules will be established: 1. There is a high variability of extracellular/intracellular drug level ratios; 2. There are three main systems involved in intratumoral drug disposition that are composed of SLC, ABC and XME enzymes; 3. There is a synergistic interplay between these three systems; 4. In cancer subclones, there is a strong genomic instability that leads to a highly variable expression of SLC, ABC or XME enzymes; 5. Tumor-expressed metabolizing enzymes play a role in tumor-specific ADME and cell survival and 6. These three systems are involved in the appearance of resistance (transient event) or in the resistance itself. In addition, this article will investigate whether the overexpression of some ABC and XME systems in cancer cells is just a random consequence of DNA/chromosomal instability, hypo- or hypermethylation and microRNA deregulation, or a more organized modification induced by transposable elements. Experiments will also have to establish if these tumor-expressed enzymes participate in cell metabolism or in tumor-specific ADME or if they are only markers of clonal evolution and genomic deregulation. Eventually, the review will underline that the fate of anticancer agents in cancer cells should be more thoroughly investigated from drug discovery to clinical studies. Indeed, inhibition of tumor expressed metabolizing enzymes could strongly increase drug disposition, specifically in the target cells resulting in more efficient therapies.
Resumo:
Breast cancer is the most common malignancy in women and a significant cause of morbidity and mortality. Sub-types of breast cancer defined by the expression of steroid hormones and Her2/Neu oncogene have distinct prognosis and undergo different therapies. Besides differing in their phenotype, sub-types of breast cancer display various molecular lesions that participate in their pathogenesis. BRCA1 is one of the common hereditary cancer predisposition genes and encodes for an ubiquitin ligase. Ubiquitin ligases or E3 enzymes participate together with ubiquitin activating enzyme and ubiquitin conjugating enzymes in the attachment of ubiquitin (ubiquitination) in target proteins. Ubiquitination is a post-translational modification regulating multiple cell functions. It also plays important roles in carcinogenesis in general and in breast carcinogenesis in particular. Ubiquitin conjugating enzymes are a central component of the ubiquitination machinery and are often perturbed in breast cancer. This paper will discuss ubiquitin and ubiquitin-like proteins conjugating enzymes participating in breast cancer pathogenesis, their relationships with other proteins of the ubiquitination machinery and their role in phenotype of breast cancer sub-types.
Resumo:
Induction of drug-metabolizing enzymes (DMEs) is highly species-specific and can lead to drug-drug interaction and toxicities. In this series of studies we tested the species specificity of the antidiabetic drug development candidate and mixed peroxisome proliferator-activated receptor (PPAR) alpha/gamma agonist (S)-4-O-tolylsulfanyl-2-(4-trifluormethyl-phenoxy)-butyric acid (EMD 392949, EMD) with regard to the induction of gene expression and activities of DMEs, their regulators, and typical PPAR target genes. EMD clearly induced PPARalpha target genes in rats in vivo and in rat hepatocytes but lacked significant induction of DMEs, except for cytochrome P450 (P450) 4A. CYP2C and CYP3A were consistently induced in livers of EMD-treated monkeys. Interestingly, classic rodent peroxisomal proliferation markers were induced in monkeys after 17 weeks but not after a 4-week treatment, a fact also observed in human hepatocytes after 72 h but not 24 h of EMD treatment. In human hepatocyte cultures, EMD showed similar gene expression profiles and induction of P450 activities as in monkeys, indicating that the monkey is predictive for human P450 induction by EMD. In addition, EMD induced a similar gene expression pattern as the PPARalpha agonist fenofibrate in primary rat and human hepatocyte cultures. In conclusion, these data showed an excellent correlation of in vivo data on DME gene expression and activity levels with results generated in hepatocyte monolayer cultures, enabling a solid estimation of human P450 induction. This study also clearly highlighted major differences between primates and rodents in the regulation of major inducible P450s, with evidence of CYP3A and CYP2C inducibility by PPARalpha agonists in monkeys and humans.