92 resultados para indirect ice detection
em Université de Lausanne, Switzerland
Resumo:
Gas chromatography (GC) is an analytical tool very useful to investigate the composition of gaseous mixtures. However, hydrogen (H2) detection after a GC separation is only possible with a Thermal Conductivity Detector (TCD), a Helium Ionisation Detector (HID) or expensive Atomic Emission Detector (AED). Recently, indirect H2 detection by GC coupled to mass spectrometry (MS) was demonstrated but the mechanism of carrier gas protonation remained unclear. With electron impact as ionisation source of MS and helium (He) as GC carrier gas, H2 is not ionised according the expected Penning ionisation neither according to the Associative ionisation. Rearrangement ionisation (RI) was found to be the main channel for H2 and D2 ionisation under GC-MS conditions used in most of laboratories using GC-MS, leading to the formation of [He−H]+ and [He−D]+ ions.
The hematology laboratory in blood doping (bd): 2014 update on the athlete biological passport (APB)
Resumo:
Introduction: Blood doping (BD) is the use of Erythropoietic Stimulating Agents (ESAs) and/or transfusion to increase aerobic performance in athletes. Direct toxicologic techniques are insufficient to unmask sophisticated doping protocols. The Hematological module of the ABP (World Anti-Doping Agency), associates decision support technology and expert assessment to indirectly detect BD hematological effects. Methods: The ABP module is based on blood parameters, under strict pre-analytical and analytical rules for collection, storage and transport at 2-12°C, internal and external QC. Accuracy, reproducibility and interlaboratory harmonization fulfill forensic standard. Blood samples are collected in competition and out-ofcompetition. Primary parameters for longitudinal monitoring are: - hemoglobin (HGB); - reticulocyte percentage (RET); - OFF score, indicator of suppressed erythropoiesis, calculated as [HGB(g/L) * 60-√RET%]. Statistical calculation predicts individual expected limits by probabilistic inference. Secondary parameters are RBC, HCT, MCHC-MCH-MCV-RDW-IFR. ABP profiles flagged as atypical are review by experts in hematology, pharmacology, sports medicine or physiology, and classified as: - normal - suspect (to target) - likely due to BD - likely due to pathology. Results: Thousands of athletes worldwide are currently monitored. Since 2010, at least 35 athletes have been sanctioned and others are prosecuted on the sole basis of abnormal ABP, with a 240% increase of positivity to direct tests for ESA, thanks to improved targeting of suspicious athletes (WADA data). Specific doping scenarios have been identified by the Experts (Table and Figure). Figure. Typical HGB and RET profiles in two highly suspicious athletes. A. Sample 2: simultaneous increases in HGB and RET (likely ESA stimulation) in a male. B. Samples 3, 6 and 7: "OFF" picture, with high HGB and low RET in a female. Sample 10: normal HGB and increased RET (ESA or blood withdrawal). Conclusions: ABP is a powerful tool for indirect doping detection, based on the recognition of specific, unphysiological changes triggered by blood doping. The effect of factors of heterogeneity, such as sex and altitude, must also be considered. Schumacher YO, et al. Drug Test Anal 2012, 4:846-853. Sottas PE, et al. Clin Chem 2011, 57:969-976.
Resumo:
Gas chromatography (GC) is an analytical tool very useful to investigate the composition of gaseous mixtures. The different gases are separated by specific columns but, if hydrogen (H2 ) is present in the sample, its detection can be performed by a thermal conductivity detector or a helium ionization detector. Indeed, coupled to GC, no other detector can perform this detection except the expensive atomic emission detector. Based on the detection and analysis of H2 isotopes by low-pressure chemical ionization mass spectrometry (MS), a new method for H2 detection by GC coupled to MS with an electron ionization ion source and a quadrupole analyser is presented. The presence of H2 in a gaseous mixture could easily be put in evidence by the monitoring of the molecular ion of the protonated carrier gas. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
Consumption of nicotine in the form of smokeless tobacco (snus, snuff, chewing tobacco) or nicotine-containing medication (gum, patch) may benefit sport practice. Indeed, use of snus seems to be a growing trend and investigating nicotine consumption amongst professional athletes is of major interest to sport authorities. Thus, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the detection and quantification of nicotine and its principal metabolites cotinine, trans-3-hydroxycotinine, nicotine-N'-oxide and cotinine-N-oxide in urine was developed. Sample preparation was performed by liquid-liquid extraction followed by hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-MS/MS) operated in electrospray positive ionization (ESI) mode with selective reaction monitoring (SRM) data acquisition. The method was validated and calibration curves were linear over the selected concentration ranges of 10-10,000 ng/mL for nicotine, cotinine, trans-3-hydroxycotinine and 10-5000 ng/mL for nicotine-N'-oxide and cotinine-N-oxide, with calculated coefficients of determination (R(2)) greater than 0.95. The total extraction efficiency (%) was concentration dependent and ranged between 70.4 and 100.4%. The lower limit of quantification (LLOQ) for all analytes was 10 ng/mL. Repeatability and intermediate precision were ?9.4 and ?9.9%, respectively. In order to measure the prevalence of nicotine exposure during the 2009 Ice Hockey World Championships, 72 samples were collected and analyzed after the minimum of 3 months storage period and complete removal of identification means as required by the 2009 International Standards for Laboratories (ISL). Nicotine and/or metabolites were detected in every urine sample, while concentration measurements indicated an exposure within the last 3 days for eight specimens out of ten. Concentrations of nicotine, cotinine, trans-3-hydroxycotinine, nicotine-N'-oxide and cotinine-N-oxide were found to range between 11 and 19,750, 13 and 10,475, 10 and 8217, 11 and 3396, and 13 and 1640 ng/mL, respectively. When proposing conservative concentration limits for nicotine consumption prior and/or during the games (50 ng/mL for nicotine, cotinine and trans-3-hydroxycotinine and 25 ng/mL for nicotine-N'-oxide and cotinine-N-oxide), about half of the hockey players were qualified as consumers. These findings significantly support the likelihood of extensive smokeless nicotine consumption. However, since such conclusions can only be hypothesized, the potential use of smokeless tobacco as a doping agent in ice hockey requires further investigation.
Resumo:
Epidemiological studies show a prevalence of sexual abuse experience among girls from 14-33%. Although indicators of abuse are unspecific, the combination of several findings may be indicative: Somatic signs may be sexually transmitted diseases, vulvovaginal complaints. Psychosocial nonsexual indicators are abrupt behavioural changes, running away from home, eating disorders. Psychosexual signs are hypersexualisation of the language and behaviour, disturbed body image and gender identity. Indirect evidence of abuse is given not only in cases of old vaginal and anal lesions but also in situations, where deep tears of the hymen in the typical localization at the posterior part can be found. The workup and care for children in whom there is suspicion of abuse but no clear evidence asks for highly competent professionals in a multidisciplinary cooperation including pediatric gynecologists, child psychiatrists, children-protection groups and other specialists to avoid on one hand unjustified destabilisation or even destruction of familial structures but to assure on the other hand, that the child victims are treated and followed after in a short and long term comprehensive medical and psychosocial care.
Resumo:
The importance of direct and indirect alcohol markers to evaluate alcohol consumption in clinical and forensic settings is increasingly recognized. While some markers are used to prove abstinence from ethanol, other markers are suitable for detection of alcohol misuse. Phosphatidyl ethanol (PEth) is ranked among the latter. There is only little information about the correlation between PEth and other currently used markers (ethyl glucuronide, ethyl sulfate, carbohydrate deficient transferrin, gamma-glutamyl transpeptidase, and methanol) and about their decline during detoxification. To get more information, 18 alcohol-dependent patients in withdrawal therapy were monitored for these parameters in blood and urine for up to 19 days. There was no correlation between the different markers. PEth showed a rapid decrease at the beginning of the intervention, a slow decline after the first few days, and could still be detected after 19 days of abstinence from ethanol.
Resumo:
The aim of this paper is to evaluate the risks associated with the use of fake fingerprints on a livescan supplied with a method of liveness detection. The method is based on optical properties of the skin. The sensor uses several polarizations and illuminations to capture the information of the different layers of the human skin. These experiments also allow for the determination under which conditions the system is deceived and if there is an influence respectively of the nature of the fake, the mould used for the production or the individuals involved in the attack. These experiments showed that current multispectral sensors can be deceived by the use of fake fingerprints created with or without the cooperation of the subject. Fakes created from direct casts perform better than those produced by fakes created from indirect casts. The results showed that the success of the attack is influenced by two main factors. The first is the quality of the fakes, and by extension the quality of the original fingerprint. The second is the combination of the general patterns involved in the attacks since an appropriate combination can strongly increase the rates of successful attacks.
Resumo:
The aim of this paper is to evaluate the risks associated with the use of fake fingerprints on a livescan supplied with a method of liveness detection. The method is based on optical properties of the skin. The sensor uses several polarizations and illuminations to capture the information of the different layers of the human skin. These experiments also allow for the determination under which conditions the system is deceived and if there is an influence respectively of the nature of the fake, the mould used for the production or the individuals involved in the attack. These experiments showed that current multispectral sensors can be deceived by the use of fake fingerprints created with or without the cooperation of the subject. Fakes created from direct casts perform better than those produced by fakes created from indirect casts. The results showed that the success of the attack is influenced by two main factors. The first is the quality of the fakes, and by extension the quality of the original fingerprint. The second is the combination of the general patterns involved in the attacks since an appropriate combination can strongly increase the rates of successful attacks.
Resumo:
Leishmania promastigotes polypeptides are analyzed by immunoblotting with sera from patients infected with different Leishmania species and presenting visceral or cutaneous infections. These sera recognize Leishmania polypeptides in several molecular masses. The major findings of this study are as follow. 1) The Leishmania 94 kDa antigen, which is specifically recognized by all sera from L. infantum-infected patients with visceral infection, is recognized by some sera from L. infantum-infected patients presenting cutaneous infection. 2) All patients with cutaneous infections due to L. tropica, L. amazonensis, or L. guyanensis do not develop anti-94 kDa antibodies, whatever the Leishmania species used as antigens. 3) Difference in electrophoretic mobilities is seen between the 94 kDa antigen identified by sera from Leishmania infantum-infected patients, and the antigen both recognized by the Concavalin A lectin and a rabbit antiserum raised against deglycosylated Promastigote Surface Protease.
Resumo:
Landslide processes can have direct and indirect consequences affecting human lives and activities. In order to improve landslide risk management procedures, this PhD thesis aims to investigate capabilities of active LiDAR and RaDAR sensors for landslides detection and characterization at regional scales, spatial risk assessment over large areas and slope instabilities monitoring and modelling at site-specific scales. At regional scales, we first demonstrated recent boat-based mobile LiDAR capabilities to model topography of the Normand coastal cliffs. By comparing annual acquisitions, we validated as well our approach to detect surface changes and thus map rock collapses, landslides and toe erosions affecting the shoreline at a county scale. Then, we applied a spaceborne InSAR approach to detect large slope instabilities in Argentina. Based on both phase and amplitude RaDAR signals, we extracted decisive information to detect, characterize and monitor two unknown extremely slow landslides, and to quantify water level variations of an involved close dam reservoir. Finally, advanced investigations on fragmental rockfall risk assessment were conducted along roads of the Val de Bagnes, by improving approaches of the Slope Angle Distribution and the FlowR software. Therefore, both rock-mass-failure susceptibilities and relative frequencies of block propagations were assessed and rockfall hazard and risk maps could be established at the valley scale. At slope-specific scales, in the Swiss Alps, we first integrated ground-based InSAR and terrestrial LiDAR acquisitions to map, monitor and model the Perraire rock slope deformation. By interpreting both methods individually and originally integrated as well, we therefore delimited the rockslide borders, computed volumes and highlighted non-uniform translational displacements along a wedge failure surface. Finally, we studied specific requirements and practical issues experimented on early warning systems of some of the most studied landslides worldwide. As a result, we highlighted valuable key recommendations to design new reliable systems; in addition, we also underlined conceptual issues that must be solved to improve current procedures. To sum up, the diversity of experimented situations brought an extensive experience that revealed the potential and limitations of both methods and highlighted as well the necessity of their complementary and integrated uses.
Resumo:
Raman spectroscopy has been applied to characterize fiber dyes and determine the discriminating ability of the method. Black, blue, and red acrylic, cotton, and wool samples were analyzed. Four excitation sources were used to obtain complementary responses in the case of fluorescent samples. Fibers that did not provide informative spectra using a given laser were usually detected using another wavelength. For any colored acrylic, the 633-nm laser did not provide Raman information. The 514-nm laser provided the highest discrimination for blue and black cotton, but half of the blue cottons produced noninformative spectra. The 830-nm laser exhibited the highest discrimination for red cotton. Both visible lasers provided the highest discrimination for black and blue wool, and NIR lasers produced remarkable separation for red and black wool. This study shows that the discriminating ability of Raman spectroscopy depends on the fiber type, color, and the laser wavelength.
Resumo:
Glutamate and the N-methyl-D-aspartate receptor ligand D-serine are putative gliotransmitters. Here, we show by immunogold cytochemistry of the adult hippocampus that glutamate and D-serine accumulate in synaptic-like microvesicles (SLMVs) in the perisynaptic processes of astrocytes. The estimated concentration of fixed glutamate in the astrocytic SLMVs is comparable to that in synaptic vesicles of excitatory nerve terminals (∼45 and ∼55 mM, respectively), whereas the D-serine level is about 6 mM. The vesicles are organized in small spaced clusters located near the astrocytic plasma membrane. Endoplasmic reticulum is regularly found in close vicinity to SLMVs, suggesting that astrocytes contain functional nanodomains, where a local Ca(2+) increase can trigger release of glutamate and/or D-serine.
Resumo:
BACKGROUND: Early detection and treatment of colorectal adenomatous polyps (AP) and colorectal cancer (CRC) is associated with decreased mortality for CRC. However, accurate, non-invasive and compliant tests to screen for AP and early stages of CRC are not yet available. A blood-based screening test is highly attractive due to limited invasiveness and high acceptance rate among patients. AIM: To demonstrate whether gene expression signatures in the peripheral blood mononuclear cells (PBMC) were able to detect the presence of AP and early stages CRC. METHODS: A total of 85 PBMC samples derived from colonoscopy-verified subjects without lesion (controls) (n = 41), with AP (n = 21) or with CRC (n = 23) were used as training sets. A 42-gene panel for CRC and AP discrimination, including genes identified by Digital Gene Expression-tag profiling of PBMC, and genes previously characterised and reported in the literature, was validated on the training set by qPCR. Logistic regression analysis followed by bootstrap validation determined CRC- and AP-specific classifiers, which discriminate patients with CRC and AP from controls. RESULTS: The CRC and AP classifiers were able to detect CRC with a sensitivity of 78% and AP with a sensitivity of 46% respectively. Both classifiers had a specificity of 92% with very low false-positive detection when applied on subjects with inflammatory bowel disease (n = 23) or tumours other than CRC (n = 14). CONCLUSION: This pilot study demonstrates the potential of developing a minimally invasive, accurate test to screen patients at average risk for colorectal cancer, based on gene expression analysis of peripheral blood mononuclear cells obtained from a simple blood sample.
Resumo:
Purpose: To investigate the accuracy of 4 clinical instruments in the detection of glaucomatous damage. Methods: 102 eyes of 55 test subjects (Age mean = 66.5yrs, range = [39; 89]) underwent Heidelberg Retinal Tomography (HRTIII), (disc area<2.43); and standard automated perimetry (SAP) using Octopus (Dynamic); Pulsar (TOP); and Moorfields Motion Displacement Test (MDT) (ESTA strategy). Eyes were separated into three groups 1) Healthy (H): IOP<21mmHg and healthy discs (clinical examination), 39 subjects, 78 eyes; 2) Glaucoma suspect (GS): Suspicious discs (clinical examination), 12 subjects, 15 eyes; 3) Glaucoma (G): progressive structural or functional loss, 14 subjects, 20 eyes. Clinical diagnostic precision was examined using the cut-off associated with the p<5% normative limit of MD (Octopus/Pulsar), PTD (MDT) and MRA (HRT) analysis. The sensitivity, specificity and accuracy were calculated for each instrument. Results: See table Conclusions: Despite the advantage of defining glaucoma suspects using clinical optic disc examination, the HRT did not yield significantly higher accuracy than functional measures. HRT, MDT and Octopus SAP yielded higher accuracy than Pulsar perimetry, although results did not reach statistical significance. Further studies are required to investigate the structure-function correlations between these instruments.
Resumo:
Cancer is a major burden in today's society and one of the leading causes of death in industrialised countries. Various avenues for the detection of cancer exist, most of which rely on standard methods, such as histology, ELISA, and PCR. Here we put the focus on nanomechanical biosensors derived from atomic force microscopy cantilevers. The versatility of this novel technology has been demonstrated in different applications and in some ways surpasses current technologies, such as microarray, quartz crystal microbalance and surface plasmon resonance. The technology enables label free biomarker detection without the necessity of target amplification in a total cellular background, such as BRAF mutation analysis in malignant melanoma. A unique application of the cantilever array format is the analysis of conformational dynamics of membrane proteins associated to surface stress changes. Another development is characterisation of exhaled breath which allows assessment of a patient's condition in a non-invasive manner.