193 resultados para in-vitro toxicity

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ACuteTox is a project within the 6th European Framework Programme which had as one of its goals to develop, optimise and prevalidate a non-animal testing strategy for predicting human acute oral toxicity. In its last 6 months, a challenging exercise was conducted to assess the predictive capacity of the developed testing strategies and final identification of the most promising ones. Thirty-two chemicals were tested blind in the battery of in vitro and in silico methods selected during the first phase of the project. This paper describes the classification approaches studied: single step procedures and two step tiered testing strategies. In summary, four in vitro testing strategies were proposed as best performing in terms of predictive capacity with respect to the European acute oral toxicity classification. In addition, a heuristic testing strategy is suggested that combines the prediction results gained from the neutral red uptake assay performed in 3T3 cells, with information on neurotoxicity alerts identified by the primary rat brain aggregates test method. Octanol-water partition coefficients and in silico prediction of intestinal absorption and blood-brain barrier passage are also considered. This approach allows to reduce the number of chemicals wrongly predicted as not classified (LD50>2000 mg/kg b.w.).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of engineered nanostructured materials into a rapidly increasing number of industrial and consumer products will result in enhanced exposure to engineered nanoparticles. Workplace exposure has been identified as the most likely source of uncontrolled inhalation of engineered aerosolized nanoparticles, but release of engineered nanoparticles may occur at any stage of the lifecycle of (consumer) products. The dynamic development of nanomaterials with possibly unknown toxicological effects poses a challenge for the assessment of nanoparticle induced toxicity and safety.In this consensus document from a workshop on in-vitro cell systems for nanoparticle toxicity testing11Workshop on 'In-Vitro Exposure Studies for Toxicity Testing of Engineered Nanoparticles' sponsored by the Association for Aerosol Research (GAeF), 5-6 September 2009, Karlsruhe, Germany. an overview is given of the main issues concerning exposure to airborne nanoparticles, lung physiology, biological mechanisms of (adverse) action, in-vitro cell exposure systems, realistic tissue doses, risk assessment and social aspects of nanotechnology. The workshop participants recognized the large potential of in-vitro cell exposure systems for reliable, high-throughput screening of nanoparticle toxicity. For the investigation of lung toxicity, a strong preference was expressed for air-liquid interface (ALI) cell exposure systems (rather than submerged cell exposure systems) as they more closely resemble in-vivo conditions in the lungs and they allow for unaltered and dosimetrically accurate delivery of aerosolized nanoparticles to the cells. An important aspect, which is frequently overlooked, is the comparison of typically used in-vitro dose levels with realistic in-vivo nanoparticle doses in the lung. If we consider average ambient urban exposure and occupational exposure at 5mg/m3 (maximum level allowed by Occupational Safety and Health Administration (OSHA)) as the boundaries of human exposure, the corresponding upper-limit range of nanoparticle flux delivered to the lung tissue is 3×10-5-5×10-3μg/h/cm2 of lung tissue and 2-300particles/h/(epithelial) cell. This range can be easily matched and even exceeded by almost all currently available cell exposure systems.The consensus statement includes a set of recommendations for conducting in-vitro cell exposure studies with pulmonary cell systems and identifies urgent needs for future development. As these issues are crucial for the introduction of safe nanomaterials into the marketplace and the living environment, they deserve more attention and more interaction between biologists and aerosol scientists. The members of the workshop believe that further advances in in-vitro cell exposure studies would be greatly facilitated by a more active role of the aerosol scientists. The technical know-how for developing and running ALI in-vitro exposure systems is available in the aerosol community and at the same time biologists/toxicologists are required for proper assessment of the biological impact of nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the EU funded integrated project "ACuteTox" is to develop a strategy in which general cytotoxicity, together with organ-specific endpoints and biokinetic features, are taken into consideration in the in vitro prediction of oral acute systemic toxicity. With regard to the nervous system, the effects of 23 reference chemicals were tested with approximately 50 endpoints, using a neuronal cell line, primary neuronal cell cultures, brain slices and aggregated brain cell cultures. Comparison of the in vitro neurotoxicity data with general cytotoxicity data generated in a non-neuronal cell line and with in vivo data such as acute human lethal blood concentration, revealed that GABA(A) receptor function, acetylcholine esterase activity, cell membrane potential, glucose uptake, total RNA expression and altered gene expression of NF-H, GFAP, MBP, HSP32 and caspase-3 were the best endpoints to use for further testing with 36 additional chemicals. The results of the second analysis showed that no single neuronal endpoint could give a perfect improvement in the in vitro-in vivo correlation, indicating that several specific endpoints need to be analysed and combined with biokinetic data to obtain the best correlation with in vivo acute toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that exposure to low doses of lead causes long-lasting neurobehavioural deficits, but the cellular changes underlying these behavioural changes remain to be elucidated. A protective role of glial cells on neurons through lead sequestration by astrocytes has been proposed. The possible modulation of lead neurotoxicity by neuron-glia interactions was examined in three-dimensional cultures of foetal rat telencephalon. Mixed-brain cell cultures or cultures enriched in either neurons or glial cells were treated for 10 days with lead acetate (10(-6) m), a concentration below the limit of cytotoxicity. Intracellular lead content and cell type-specific enzyme activities were determined. It was found that in enriched cultures neurons stored more lead than glial cells, and each cell type alone stored more lead than in co-culture. Moreover, glial cells but not neurons were more affected by lead in enriched culture than in co-culture. These results show that neuron-glia interactions attenuate the cellular lead uptake and the glial susceptibility to lead, but they do not support the idea of a protective role of astrocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies in urban areas have linked increasing respiratory and cardiovascular pathologies with atmospheric particulate matter (PM) from anthropic activities. However, the biological fate of metal-rich PM industrial emissions in urban areas of developed countries remains understudied. Lead toxicity and bioaccessibility assessments were therefore performed on emissions from a lead recycling plant, using complementary chemical acellular tests and toxicological assays, as a function of PM size (PM(10-2.5), PM(2.5-1) and PM(1)) and origin (furnace, refining and channeled emissions). Process PM displayed differences in metal content, granulometry, and percentage of inhalable fraction as a function of their origin. Lead gastric bioaccessibility was relatively low (maximum 25%) versus previous studies; although, because of high total lead concentrations, significant metal quantities were solubilized in simulated gastrointestinal fluids. Regardless of origin, the finest PM(1) particles induced the most significant pro-inflammatory response in human bronchial epithelial cells. Moreover, this biological response correlated with pro-oxidant potential assay results, suggesting some biological predictive value for acellular tests. Pulmonary effects from lead-rich PM could be driven by thiol complexation with either lead ions or directly on the particulate surface. Finally, health concern of PM was discussed on the basis of pro-inflammatory effects, accellular test results, and PM size distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that exposure to low doses of lead causes long-lasting neurobehavioural deficits, but the cellular changes underlying these behavioural changes remain to be elucidated. A protective role of glial cells on neurons through lead sequestration by astrocytes has been proposed. The possible modulation of lead neurotoxicity by neuron-glia interactions was examined in three-dimensional cultures of foetal rat telencephalon. Mixed-brain cell cultures or cultures enriched in either neurons or glial cells were treated for 10 days with lead acetate (10(-6) m), a concentration below the limit of cytotoxicity. Intracellular lead content and cell type-specific enzyme activities were determined. It was found that in enriched cultures neurons stored more lead than glial cells, and each cell type alone stored more lead than in co-culture. Moreover, glial cells but not neurons were more affected by lead in enriched culture than in co-culture. These results show that neuron-glia interactions attenuate the cellular lead uptake and the glial susceptibility to lead, but they do not support the idea of a protective role of astrocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the multiplicity of nanoparticles (NPs), there is a requirement to develop screening strategies to evaluate their toxicity. Within the EU-funded FP7 NanoTEST project, a panel of medically relevant NPs has been used to develop alternative testing strategies of NPs used in medical diagnostics. As conventional toxicity tests cannot necessarily be directly applied to NPs in the same manner as for soluble chemicals and drugs, we determined the extent of interference of NPs with each assay process and components. In this study, we fully characterized the panel of NP suspensions used in this project (poly(lactic-co-glycolic acid)-polyethylene oxide [PLGA-PEO], TiO2, SiO2, and uncoated and oleic-acid coated Fe3O4) and showed that many NP characteristics (composition, size, coatings, and agglomeration) interfere with a range of in vitro cytotoxicity assays (WST-1, MTT, lactate dehydrogenase, neutral red, propidium iodide, (3)H-thymidine incorporation, and cell counting), pro-inflammatory response evaluation (ELISA for GM-CSF, IL-6, and IL-8), and oxidative stress detection (monoBromoBimane, dichlorofluorescein, and NO assays). Interferences were assay specific as well as NP specific. We propose how to integrate and avoid interference with testing systems as a first step of a screening strategy for biomedical NPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite a wealth of data on the neurotoxic effects of lead at the cellular and molecular levels, the reasons for its development-dependent neurotoxicity are still unclear. Here, the maturation-dependent effects of lead acetate were analyzed in immature and differentiated brain cells cultured in aggregates. Markers of general cytotoxicity as well as cell-type-specific markers of glial and neuronal cells showed that immature brain cells were more sensitive to lead than the differentiated counterparts, demonstrating that the development-dependent neurotoxicity of lead can be reproduced in aggregating brain cell cultures. After 10 days of treatment, astrocytes were found to be more affected by lead acetate than neurons in immature cultures, and microglial cells were strongly activated. Eleven days after cessation of the treatment, lead acetate caused a partial loss of astrocytes and an intense reactivity of the remaining ones. Furthermore, microglial cells expressed a macrophagic phenotype, and the loss of activity of neuron-specific enzymes was aggravated. In differentiated cultures, no reactive gliosis was found. It is hypothetized that the intense glial reactions (microgliosis and astrogliosis) observed in immature cultures contribute to the development-dependent neurotoxicity of lead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental chemicals with estrogenic activities have been suggested to be associated with deleterious effects in animals and humans. To characterize estrogenic chemicals and their mechanisms of action, we established in vitro and cell culture assays that detect human estrogen receptor [alpha] (hER[alpha])-mediated estrogenicity. First, we assayed chemicals to determine their ability to modulate direct interaction between the hER[alpha] and the steroid receptor coactivator-1 (SRC-1) and in a competition binding assay to displace 17ss-estradiol (E(2)). Second, we tested the chemicals for estrogen-associated transcriptional activity in the yeast estrogen screen and in the estrogen-responsive MCF-7 human breast cancer cell line. The chemicals investigated in this study were o,p'-DDT (racemic mixture and enantiomers), nonylphenol mixture (NPm), and two poorly analyzed compounds in the environment, namely, tris-4-(chlorophenyl)methane (Tris-H) and tris-4-(chlorophenyl)methanol (Tris-OH). In both yeast and MCF-7 cells, we determined estrogenic activity via the estrogen receptor (ER) for o,p'-DDT, NPm, and for the very first time, Tris-H and Tris-OH. However, unlike estrogens, none of these xenobiotics seemed to be able to induce ER/SRC-1 interactions, most likely because the conformation of the activated receptor would not allow direct contacts with this coactivator. However, these compounds were able to inhibit [(3)H]-E(2) binding to hER, which reveals a direct interaction with the receptor. In conclusion, the test compounds are estrogen mimics, but their molecular mechanism of action appears to be different from that of the natural hormone as revealed by the receptor/coactivator interaction analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To test the ability of two preparations of FGF2-saporin, either FGF2 chemically conjugated to saporin (FGF2-SAP) or genetically engineered FGF2-saporin (rFGF2-SAP) to inhibit the growth of bovine epithelial lens (BEL) cells in vitro when in solution and when immobilized on heparin surface-modified (HSM) polymethylmethacrylate (PMMA) intraocular lenses (IOLs). METHOD: Bovine epithelial lens cells were incubated with various concentrations FGF2-saporin for as long as 4 days. The number of surviving cells was determined by counting the number of nuclei. Because FGF2 binds to heparin, FGF2-saporin was incubated with HSM PMMA IOLs; excess toxin was washed off, and the BEL cells were grown on the FGF2-saporin-treated IOLs (HSM and non-HSM) for 4 days. Cell density was determined by image analysis. RESULTS: Both FGF2-SAP and rFGF2-SAP were highly cytotoxic (nM range), with rFGF2-SAP 10 times less active than FGF2-SAP. FGF2-saporin bound to the surface of HSM IOLs and eluted by 2M NaCl retained its activity. Toxin bound to HSM IOLs killed more than 90% of the BEL cells placed on the IOL surface within 4 days. The ability of FGF2-saporin to prevent the growth of cells on the IOL surface was strictly dependent on the presence of heparin on the IOL. CONCLUSIONS: FGF2-saporin is bound to HSM PMMA IOLs and prevents the growth of epithelial cells on the surface of the lens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colon carcinoma multicellular spheroids were incubated in vitro with radiolabelled MAbs. The more rapid penetration of fragments as compared to intact MAbs was clearly demonstrated. For the study of antibody localization in tumors in vivo, the model of nude mice with ligated kidneys was used. Although very artificial, this model allowed to demonstrate that, without urinary excretion, Fab fragments accumulated more rapidly into the tumor than intact MAbs and disappeared faster from the blood. This difference was less striking for F(ab')2 fragments. In the liver a decreased accumulation of both types of fragments as compared to intact MAbs was observed. Concerning radioimmunotherapy we think that Fab fragments are not useful because of their too short half-life in the circulation and in tumor and because they will probably be too toxic for the kidneys. Intact MAbs and F(ab')2 fragments have each their advantages. Intact MAbs show highest tumor accumulation in mice without ligated kidney, however, they remain mostly on the periphery of tumor nodules, as shown by autoradiography. F(ab')2 fragments have been found to penetrate deeper into the tumor and to accumulate less in the liver. It might be therefore an advantage to combine intact MAbs with F(ab')2 fragments, so that in the tumor two different regions could be attacked whereas in normal tissues toxicity could be distributed to different organs such as to the liver with intact MAbs and to the kidney with F(ab')2 fragments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Fine particulate matter originating from traffic correlates with increased morbidity and mortality. An important source of traffic particles is brake wear of cars which contributes up to 20% of the total traffic emissions. The aim of this study was to evaluate potential toxicological effects of human epithelial lung cells exposed to freshly generated brake wear particles. Results: An exposure box was mounted around a car's braking system. Lung cells cultured at the air-liquid interface were then exposed to particles emitted from two typical braking behaviours ("full stop" and "normal deceleration"). The particle size distribution as well as the brake emission components like metals and carbons was measured on-line, and the particles deposited on grids for transmission electron microscopy were counted. The tight junction arrangement was observed by laser scanning microscopy. Cellular responses were assessed by measurement of lactate dehydrogenase (cytotoxicity), by investigating the production of reactive oxidative species and the release of the pro-inflammatory mediator interleukin-8. The tight junction protein occludin density decreased significantly (p < 0.05) with increasing concentrations of metals on the particles (iron, copper and manganese, which were all strongly correlated with each other). Occludin was also negatively correlated with the intensity of reactive oxidative species. The concentrations of interleukin-8 were significantly correlated with increasing organic carbon concentrations. No correlation was observed between occludin and interleukin-8, nor between reactive oxidative species and interleukin-8. Conclusion: These findings suggest that the metals on brake wear particles damage tight junctions with a mechanism involving oxidative stress. Brake wear particles also increase pro-inflammatory responses. However, this might be due to another mechanism than via oxidative stress. [Authors]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Only a small percentage of neurodegenerative diseases like Alzheimer's disease and Parkinson's disease is directly related to familial forms. The etiology of the most abundant, sporadic forms seems to involve both genetic and environmental factors. Environmental compounds are now extensively studied for their possible contribution to neurodegeneration. Chemicals were found which were able to reproduce symptoms of known neurodegenerative diseases, others may either predispose to the onset of neurodegeneration, or exacerbate distinct pathogenic processes of these diseases. In any case, in vitro studies performed with models presenting various degrees of complexity have shown that many environmental compounds have the potential to cause neurodegeneration, through a variety of pathways similar to those described in neurodegenerative diseases. Since the population is exposed to a huge number of potentially neurotoxic compounds, there is an important need for rapid and efficient procedures for hazard evaluation. Xenobiotics elicit a cascade of reactions that, most of the time, involve numerous interactions between the different brain cell types. A reliable in vitro model for the detection of environmental toxins potentially at risk for neurodegenerative diseases should therefore allow maximal cell-cell interactions and multiparametric endpoints determination. The combined use of in vitro models and new analytical approaches using "omics" technologies should help to map toxicity pathways, and advance our understanding of the possible role of xenobiotics in the etiology of neurodegenerative diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Une des percées les plus importantes dans la recherche sur les nanoparticules (ambiantes et manufacturées) a été la reconnaissance de leur potentiel à générer un stress oxydatif au niveau cellulaire. Dans cette optique, la mesure du potentiel oxydant intrinsèque des particules pourrait présenter une première étape dans l'évaluation des dangers. Ce projet méthodologique avait pour but de caractériser le potentiel oxydant de différentes nanoparticules « modèles » (ambiantes et manufacturées) au moyen de trois tests acellulaires (Test DTT, Test DCFH, Test oxymétrique) et d'utiliser ces résultats pour proposer une méthode de « référence ». D'autre part, nous avons appliqué la méthode sélectionnée à deux cas (exposition d'ouvriers à des particules de combustion et évaluation du danger de différentes nanoparticules manufacturées) afin de déterminer quels sont les paramètres qui influencent la mesure. Les résultats obtenus indiquent que la préparation des suspensions joue un rôle dans la mesure de ce potentiel oxydant. La réactivité dépend de la concentration du surfactant et de la durée de sonication. D'autre part, l'ordre de réactivité est dépendant de la métrique utilisée (masse ou surface) pour exprimer les résultats. Parmi les trois tests considérés, le test DTT pourrait être le plus utile pour effectuer une évaluation initiale du danger potentiel de nanoparticules ambiantes ou manufacturées. Ce test pourrait être intégré dans une stratégie d'évaluation de la toxicité des nanoparticules. Le test DTT correspond bien un test intégratif. Pour des situations de travail dans lesquelles les particules de combustion sont majoritaires, les paramètres physico-chimiques qui corrèlent de manière significative avec la réactivité DTT sont la surface des particules, les concentrations de carbone organique, la somme des concentrations de quatre quinones et les concentrations de fer et cuivre. Un nombre plus faible de corrélations est observé dans des ateliers mécaniques, suggérant que d'autres composés non mesurés interviennent également dans cette réactivité. Concernant les nanoparticules carbonées manufacturées, les fonctions chimiques de surface corrélées avec la réactivité DTT sont des fonctions acides et des fonctions inconnues pouvant dismuter. D'autre part, la solubilité et la possibilité de former des complexes avec le DTT sur la surface des NP manufacturées influencent le résultat de réactivité.