334 resultados para image-making
em Université de Lausanne, Switzerland
Resumo:
Detection and discrimination of visuospatial input involve at least extracting, selecting and encoding relevant information and decision-making processes allowing selecting a response. These two operations are altered, respectively, by attentional mechanisms that change discrimination capacities, and by beliefs concerning the likelihood of uncertain events. Information processing is tuned by the attentional level that acts like a filter on perception, while decision-making processes are weighed by subjective probability of risk. In addition, it has been shown that anxiety could affect the detection of unexpected events through the modification of the level of arousal. Consequently, purpose of this study concerns whether and how decision-making and brain dynamics are affected by anxiety. To investigate these questions, the performance of women with either a high (12) or a low (12) STAI-T (State-Trait Anxiety Inventory, Spielberger, 1983) was examined in a decision-making visuospatial task where subjects have to recognize a target visual pattern from non-target patterns. The target pattern was a schematic image of furniture arranged in such a way as to give the impression of a living room. Non-target patterns were created by either the compression or the dilatation of the distances between objects. Target and non-target patterns were always presented in the same configuration. Preliminary behavioral results show no group difference in reaction time. In addition, visuo-spatial abilities were analyzed trough the signal detection theory for quantifying perceptual decisions in the presence of uncertainty (Green and Swets, 1966). This theory treats detection of a stimulus as a decision-making process determined by the nature of the stimulus and cognitive factors. Astonishingly, no difference in d' (corresponding to the distance between means of the distributions) and c (corresponds to the likelihood ratio) indexes was observed. Comparison of Event-related potentials (ERP) reveals that brain dynamics differ according to anxiety. It shows differences in component latencies, particularly a delay in anxious subjects over posterior electrode sites. However, these differences are compensated during later components by shorter latencies in anxious subjects compared to non-anxious one. These inverted effects seem indicate that the absence of difference in reaction time rely on a compensation of attentional level that tunes cortical activation in anxious subjects, but they have to hammer away to maintain performance.
Resumo:
INTRODUCTION: This study sought to increase understanding of women's thoughts and feelings about decision making and the experience of subsequent pregnancy following stillbirth (intrauterine death after 24 weeks' gestation). METHODS: Eleven women were interviewed, 8 of whom were pregnant at the time of the interview. Modified grounded theory was used to guide the research methodology and to analyze the data. RESULTS: A model was developed to illustrate women's experiences of decision making in relation to subsequent pregnancy and of subsequent pregnancy itself. DISCUSSION: The results of the current study have significant implications for women who have experienced stillbirth and the health professionals who work with them. Based on the model, women may find it helpful to discuss their beliefs in relation to healing and health professionals to provide support with this in mind. Women and their partners may also benefit from explanations and support about the potentially conflicting emotions they may experience during this time.
Resumo:
This paper presents a semisupervised support vector machine (SVM) that integrates the information of both labeled and unlabeled pixels efficiently. Method's performance is illustrated in the relevant problem of very high resolution image classification of urban areas. The SVM is trained with the linear combination of two kernels: a base kernel working only with labeled examples is deformed by a likelihood kernel encoding similarities between labeled and unlabeled examples. Results obtained on very high resolution (VHR) multispectral and hyperspectral images show the relevance of the method in the context of urban image classification. Also, its simplicity and the few parameters involved make the method versatile and workable by unexperienced users.
Resumo:
Background Decisions on limiting life-sustaining treatment for patients in the vegetative state (VS) are emotionally and morally challenging. In Germany, doctors have to discuss, together with the legal surrogate (often a family member), whether the proposed treatment is in accordance with the patient's will. However, it is unknown whether family members of the patient in the VS actually base their decisions on the patient's wishes. Objective To examine the role of advance directives, orally expressed wishes, or the presumed will of patients in a VS for family caregivers' decisions on life-sustaining treatment. Methods and sample A qualitative interview study with 14 next of kin of patients in a VS in a long-term care setting was conducted; 13 participants were the patient's legal surrogates. Interviews were analysed according to qualitative content analysis. Results The majority of family caregivers said that they were aware of aforementioned wishes of the patient that could be applied to the VS condition, but did not base their decisions primarily on these wishes. They gave three reasons for this: (a) the expectation of clinical improvement, (b) the caregivers' definition of life-sustaining treatments and (c) the moral obligation not to harm the patient. If the patient's wishes were not known or not revealed, the caregivers interpreted a will to live into the patient's survival and non-verbal behaviour. Conclusions Whether or not prior treatment wishes of patients in a VS are respected depends on their applicability, and also on the medical assumptions and moral attitudes of the surrogates. We recommend repeated communication, support for the caregivers and advance care planning.
Resumo:
The investigation of perceptual and cognitive functions with non-invasive brain imaging methods critically depends on the careful selection of stimuli for use in experiments. For example, it must be verified that any observed effects follow from the parameter of interest (e.g. semantic category) rather than other low-level physical features (e.g. luminance, or spectral properties). Otherwise, interpretation of results is confounded. Often, researchers circumvent this issue by including additional control conditions or tasks, both of which are flawed and also prolong experiments. Here, we present some new approaches for controlling classes of stimuli intended for use in cognitive neuroscience, however these methods can be readily extrapolated to other applications and stimulus modalities. Our approach is comprised of two levels. The first level aims at equalizing individual stimuli in terms of their mean luminance. Each data point in the stimulus is adjusted to a standardized value based on a standard value across the stimulus battery. The second level analyzes two populations of stimuli along their spectral properties (i.e. spatial frequency) using a dissimilarity metric that equals the root mean square of the distance between two populations of objects as a function of spatial frequency along x- and y-dimensions of the image. Randomized permutations are used to obtain a minimal value between the populations to minimize, in a completely data-driven manner, the spectral differences between image sets. While another paper in this issue applies these methods in the case of acoustic stimuli (Aeschlimann et al., Brain Topogr 2008), we illustrate this approach here in detail for complex visual stimuli.
Resumo:
Defining an efficient training set is one of the most delicate phases for the success of remote sensing image classification routines. The complexity of the problem, the limited temporal and financial resources, as well as the high intraclass variance can make an algorithm fail if it is trained with a suboptimal dataset. Active learning aims at building efficient training sets by iteratively improving the model performance through sampling. A user-defined heuristic ranks the unlabeled pixels according to a function of the uncertainty of their class membership and then the user is asked to provide labels for the most uncertain pixels. This paper reviews and tests the main families of active learning algorithms: committee, large margin, and posterior probability-based. For each of them, the most recent advances in the remote sensing community are discussed and some heuristics are detailed and tested. Several challenging remote sensing scenarios are considered, including very high spatial resolution and hyperspectral image classification. Finally, guidelines for choosing the good architecture are provided for new and/or unexperienced user.
Resumo:
So-called online Voting Advice Applications (VAAs) have become very popular all over Europe. Millions of voters are using them as an assistance to make up their minds for which party they should vote. Despite this popularity there are only very few studies about the impact of these tools on individual electoral choice. On the basis of the Swiss VAA smartvote we present some first findings about the question whether VAAs do have a direct impact on the actual vote of their users. In deed, we find strong evidence that Swiss voters were affected by smartvote. However, our findings are somewhat contrary to the results of previous studies from other countries. Furthermore, the quality of available data for such studies needs to be improved. Future studies should pay attention to both: the improvement of the available data, as well as the explanation of the large variance of findings between the specific European countries.
Resumo:
Images obtained from high-throughput mass spectrometry (MS) contain information that remains hidden when looking at a single spectrum at a time. Image processing of liquid chromatography-MS datasets can be extremely useful for quality control, experimental monitoring and knowledge extraction. The importance of imaging in differential analysis of proteomic experiments has already been established through two-dimensional gels and can now be foreseen with MS images. We present MSight, a new software designed to construct and manipulate MS images, as well as to facilitate their analysis and comparison.
Resumo:
The Tiwi people of northern Australia have managed natural resources continuously for 6000-8000 years. Tiwi management objectives and outcomes may reflect how they gather information about the environment. We qualitatively analyzed Tiwi documents and management techniques to examine the relation between the social and physical environment of decision makers and their decision-making strategies. We hypothesized that principles of bounded rationality, namely, the use of efficient rules to navigate complex decision problems, explain how Tiwi managers use simple decision strategies (i.e., heuristics) to make robust decisions. Tiwi natural resource managers reduced complexity in decision making through a process that gathers incomplete and uncertain information to quickly guide decisions toward effective outcomes. They used management feedback to validate decisions through an information loop that resulted in long-term sustainability of environmental use. We examined the Tiwi decision-making processes relative to management of barramundi (Lates calcarifer) fisheries and contrasted their management with the state government's management of barramundi. Decisions that enhanced the status of individual people and their attainment of aspiration levels resulted in reliable resource availability for Tiwi consumers. Different decision processes adopted by the state for management of barramundi may not secure similarly sustainable outcomes.