36 resultados para hydrothermal deposition
em Université de Lausanne, Switzerland
Resumo:
AbstractBACKGROUND: KRAB-ZFPs (Krüppel-associated box domain-zinc finger proteins) are vertebrate-restricted transcriptional repressors encoded in the hundreds by the mouse and human genomes. They act via an essential cofactor, KAP1, which recruits effectors responsible for the formation of facultative heterochromatin. We have recently shown that KRAB/KAP1 can mediate long-range transcriptional repression through heterochromatin spreading, but also demonstrated that this process is at times countered by endogenous influences.METHOD: To investigate this issue further we used an ectopic KRAB-based repressor. This system allowed us to tether KRAB/KAP1 to hundreds of euchromatic sites within genes, and to record its impact on gene expression. We then correlated this KRAB/KAP1-mediated transcriptional effect to pre-existing genomic and chromatin structures to identify specific characteristics making a gene susceptible to repression.RESULTS: We found that genes that were susceptible to KRAB/KAP1-mediated silencing carried higher levels of repressive histone marks both at the promoter and over the transcribed region than genes that were insensitive. In parallel, we found a high enrichment in euchromatic marks within both the close and more distant environment of these genes.CONCLUSION: Together, these data indicate that high levels of gene activity in the genomic environment and the pre-deposition of repressive histone marks within a gene increase its susceptibility to KRAB/KAP1-mediated repression.
Resumo:
Several quartz crystals from three different Alpine vein localities and of known petrologic setting and evolution have been examined for possible elemental sector zoning in order to help to constrain the mechanisms of such trace element incorporation. Using different in situ techniques (EMPA, LA-ICPMS, SIMS, FTIR-spectroscopy), it was established that Al and Li concentrations can exceed several hundreds of ppma for distinct growth zones within crystals formed at temperatures of about 300 degrees C or less and that also display patterns of cyclic growth when examined with cathodoluminescence. In contrast, crystals formed at temperatures closer to 400 degrees C and without visible cyclic growth have low concentrations of Al and Li as well as other trace elements. Al and Li contents are correlated along profiles measured within the crystals and in general their proportion does not change along the profiles. No relationships were found between Al, Na, and K, and germanium has a qualitative relationship with Al. FTIR spectra also show OH(-) absorption bands within the quartz, with higher amplitudes in zones rich in Al and Li. Sector zoning is present. It is most pronounced between prismatic and rhombohedral faces of the same growth zone, but also between the rhombohedral faces of r and z, which contain different amounts of trace elements. The sector zoning is also expressed by changes in the Li/Al ratio, with higher ratios in 17 compared to r faces. It is concluded that the incorporation of trace elements into hydrothermal quartz from Alpine veins is influenced by growth mechanisms and surface-structures of the growing quartz crystals, the influence of which may change as a function of temperature, pH, as well as the chemical composition of the fluid.
Resumo:
Although recent hydrothermal experiments imply that abiogenic methane (CH4) generation from hydrothermal reduction of CO2 can occur, evidence from natural systems was still lacking. Based on the chemical and isotopic equilibrium signatures of low-temperature fumarolic gas discharges, we are able to provide hard evidence for its natural occurrence, namely in three subduction-related bi-phase hydrothermal systems of the Mediterranean, whose temperatures range from 260 to 470 degrees C. The attainment of equilibrium and the time spans of recent volcanic dormancy allowed us to calculate minimum rates for chemical and isotopic equilibration. These are significantly higher than those previously reported and might be due to the presence of a saturated water vapor phase in the investigated systems. The fact that nature provides conditions enabling relatively fast production of hydrocarbons from CO2 strongly supports the concerns that were recently raised from laboratory experiments. These address the use of the carbon isotope composition of reduced carbon in Archean sediments as a tracer of early life and the occurrence of CH4 on extraterrestrial planets as a bioindicator. In view of the potential role of abiogenic CH4 as a precursor of life, we also present an estimate of abiogenic hydrothermal CH4 fluxes throughout the Archean. It is not expected that these fluxes exceeded 80 Mt/yr during the past 4.0 Ga. This, however, would have been enough to facilitate HCN production on the prebiotic Earth. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The in situ deposition of zinc oxide on gold nanoparticles in aqueous solution has been here successfully applied in the field of fingermark detection on various non-porous surfaces. In this article, we present the improvement of the multimetal deposition, an existing technique limited up to now to non-luminescent results, by obtaining luminescent fingermarks with very good contrast and details. This is seen as a major improvement in the field in terms of selectivity and sensitivity of detection, especially on black surfaces.
Resumo:
The chemical and isotopic compositions (deltaD(H2O), delta(18)O(H2O), delta(18)O(CO2), delta(13)C(CO2), delta(34)S, and He/N-2 and He/Ar ratios) of fumarolic gases from Nisyros, Greece, indicate that both arc-type magmatic water and local seawater feed the hydrothermal system. Isotopic composition of the deep fluid is estimated to be +4.9+/-0.5parts per thousand for delta(18)O and -11+/-5parts per thousand for deltaD corresponding to a magmatic water fraction of 0.7. Interpretation of the stable water isotopes was based on liquid-vapor separation conditions obtained through gas geothermometry. The H-2-Ar, H-2-N-2, and H-2-H2O geothermometers suggest reservoir temperatures of 345+/-15 degreesC, in agreement with temperatures measured in deep geothermal wells, whereas a vapor/liquid separation temperature of 260+/-30 degreesC is indicated by gas equilibria in the H2O-H-2-CO2-CO-CH4 system. The largest magmatic inputs seem to occur below the Stephanos-Polybotes Micros crater, whereas the marginal fumarolic areas of Phlegeton-Polybotes Megalos craters receive a smaller contribution of magmatic gases.
Resumo:
The Mantoverde iron oxide copper-gold (IOCC) district, northern Chile, is known for its Cu production from supergene ores. Recently, exploration outlined an additional hypogene ore resource of 440 Mt with 0.56 percent Cu, and 0.12 g/t An. The hypogene sulfide mineralization occurs mainly as chalcopyrite and pyrite, typically in specularite or magnetite-cemented breccias and associated stockworks. The host rocks underwent variably intense K feldspar alteration, chloritization, sericitization, silicification, and/or carbonatization. A district scale Na(-Ca) alteration is absent. The IOCC mineralization in the district shows a strong tectonic control by northwest- to north-northwest-trending brittle structures. Large Cu sulfide-rich veins or Cu sulfide-cemented breccias are absent. Therefore, head grades of 4 percent Cu are an exception. There is a positive correlation between Cu and An grades. Gold is probably contained mostly in chalcopyrite and pyrite. Elevated concentrations of light rare-earth elements (LREE) occur locally but are attributed to redistribution of LREE within the deposits rather than to derivation from external sources. The Cu-Au ores in the Mantoverde district are low in and have relatively low contents in heavy metals that are potentially hazardous to the environment, such as As (avg 14 ppm), Hg (<5 ppm), or Cd (<0.2 ppm). The sulfur isotope ratios of chalcopyrite from the IOCC deposits lie between -5.6 and 8.9 per mil delta(34)S(VCDT). They show systematic variations within the district, which are interpreted to reflect relative distance to inferred fluid conduits and the level of deposition within the hydrothermal system. Most initial (87)Sr/(86)Sr values of altered volcanic rocks and hydrothermal calcite from the Mantoverde district are between 0.7031 and 0.7060 and are similar to those of the igneous rocks of the region. Lead isotope ratios of chalcopyrite are consistent with Pb (and by inference Cu) derived from Early Cretaceous magmatism. The sulfur, strontium, and lead isotope data of chalcopyrite, calcite gangue, or altered host rocks, respectively, are compatible with a genetic model that involves cooling of metal and sulfur-bearing magmatic-hydrothermal fluids that mix with meteoric waters or seawater at relatively shallow crustal levels. An additional exotic sulfur input is likely, though not required, for the copper mineralization. Apart from the IOCC. deposits, there are a number of smaller magnetite(-apatite) bodies in the district. These are geologically similar to the Cu-Au-bearing magnetite bodies, but are related to splays of the north-south-trending Atacama fault zone and differ in alteration and texture.
Resumo:
The late Variscan (275-278 Ma) Pribram uranium deposit is one of the largest known accumulations of uraniferous bitumens in hydrothermal veins. The deposit extends along the northwestern boundary of the Central Bohemian pluton (345-335 Ma) with low-grade metamorphosed Late Proterozoic and unmetamorphosed Cambrian rocks. From a net uranium production of 41,742 metric tons (t), more than 6,000 t were extracted from bitumen-uraninite ores during 43 years of exploration and mining. Three morphological varieties of solid bitumen are recognized: globular, asphaltlike, and cokelike. While the globular bitumen is uranium free, the other two types are uraniferous. The amount of bitumen in ore veins gradually decreases toward the contact with the plutonic body and increases with depth. Two types of bitumen microtextures are recognized using high-resolution transmission electron microscopy: amorphous and microporous, the former being less common in uraniferous samples. A lower Raman peak area ratio (1,360/1,575 cm(-1)) in mineralized bitumens (0.9) compared with uranium-free samples (2.0) indicates a lower degree of microtextural organization in the latter The H/C and O/C atomic ratios in uranium-free bitumens (0.9-1.1 and 0.09, respectively) are higher than those in mineralized samples (H/C = 0.3-0.8, O/C = 0.03-0.09). The chloroform extractable matter yield is Very low in uranium-free bitumens (0.30-0.35% of the total organic carbon,TOC) and decreases with uranium content increase. The extracted solid uraniferous bitumen infrared spectra show depletion in aliphatic CH2 and CH3 groups compared to uranium-free samples. The concentration of oxygen-bearing functional groups relative to aromatic bonds in the IR spectra of uranium-free and mineralized bitumen, however, do not differ significantly. C-13 NMR confirmed than the aromaticity of a uraniferous sample is higher (F-ar = 0.61) than in the uranium-free bitumen (F-ar = 0.51). Pyrolysates from uraniferous and nonuraniferous bitumens do not differ significantly, being predominantly cresol, alkylphenols, alkylbenzenes, and alkylnaphthalenes. The liquid pyrolysate yield decreases significantly with increasing uranium content. The delta(13)C Values of bulk uranium-free bitumens and low-grade uraniferous, asphaltlike bitumens range from -43.6 to 52.3 per mil. High-grade, cokelike, uraniferous bitumens are more C-13 depleted (54.5 to -58.4 parts per thousand). In contrast to the very light isotopic ratios of the high-grade uraniferous cokelike bitumen bulk carbon, the individual n-alkanes and isoprenoids (pristane and phytane) extracted from the same sample are significantly C-13 enriched. The isotopic composition of the C13-24 n-alkanes extracted from the high-grade uraniferous sample (delta(13)C = -28.0 to 32.6 parts per thousand) are heavier compared with the same compounds in a uranium-free sample (delta(13)C = 31.9 to 33.8 parts per thousand). It is proposed that the bitumen source was the isotopically light (delta(13)C = 35.8 to 30.2 parts per thousand) organic matter of the Upper Proterozoic host rocks that were pyrolyzed during intrusion of the Central Bohemian pluton. The C-13- depleted pyrolysates were mobilized from the innermost part of the contact-metamorphic aureole, accumulated in structural traps in less thermally influenced parts of the sedimentary complex and were later extracted by hydrothermal fluids. Bitumens at the Pribram deposit are younger than the main part of the uranium mineralization and were formed through water-washing and radiation-induced polymerization of both the gaseous and liquid pyrolysates. Direct evidence for pyrolysate reduction of uranium in the hydrothermal system is difficult to obtain as the chemical composition of the original organic fluid phase was modified during water-washing and radiolytic alteration. However, indirect evidence-e.g., higher O/C atomic ratios in uranium-free bitumens (0.1) relative to the Upper Proterozoic source rocks (0.02-0.05), isotopically very light carbon in associated whewellite (delta(13)C = 31.7 to -28.4 parts per thousand), and the striking absence of bitumens in the pre-uranium, hematite stage of the mineralization-indicates that oxidation of organic fluids may have contributed to lowering of aO(2) and uraninite precipitation.
Resumo:
The Hamersley province of northwest Australia is one of the world's premier iron ore regions with high-grade martite-microplaty hematite iron ore deposits mostly hosted within banded iron formation (BIF) sequences of the Brockman Iron Formations of the Hamersley Group. These high-grade iron ores contain between 60 and 68 wt percent Fe, and formed by the multistage interaction of hydrothermal fluids with the host BIF formation. The oxygen isotope compositions of magnetite and hematite from BIF, hydrothermal alteration assemblages, and high-grade iron Ore were analyzed from the Mount Tom Price, Paraburdoo, and Charmar iron ore deposits. The delta(18)O values of magnetite and hematite from hydrothermal alteration assemblages and high-grade iron ore range from -9.0 to -2.9 per mil, a depletion of 5 to 15 per mil relative to the host BIF. The delta(18)O values are spatially controlled by faults within the deposits, a response to higher fluid flux and larger influence the isotopic compositions by the hydrothermal fluids. The oxygen isotope composition of hydrothermal fluids (delta(18)O(fluid)) indicates that the decrease in the (18)O content of iron oxides was due to the interaction of both basinal brines and meteoric fluids with the original BIF. Late-stage talc-bearing ore at the Mount Tom Price deposit formed in the presence of a pulse of delta(18)O-enriched basinal brine, indicating that hydrothermal fluids may have repeatedly interacted with the BIFs during the Paleoproterozoic.
Resumo:
BACKGROUND: Plasmid DNA vaccination is a promising approach, but studies in non-human primates and humans failed to achieve protective immunity. To optimise this technology further with focus on pulmonary administration, we developed and evaluated an adjuvant-equipped DNA carrier system based on the biopolymer chitosan. In more detail, the uptake and accompanying immune response of adjuvant Pam3Cys (Toll-like receptor-1/2 agonist) decorated chitosan DNA nanoparticles (NP) were explored by using a three-dimensional (3D) cell culture model of the human epithelial barrier. Pam3Cys functionalised and non-functionalised chitosan DNA NP were sprayed by a microsprayer onto the surface of 3D cell cultures and uptake of NP by epithelial and immune cells (blood monocyte-derived dendritic cells (MDDC) and macrophages (MDM)) was visualised by confocal laser scanning microscopy. In addition, immune activation by TLR pathway was monitored by analysis of interleukin-8 and tumor necrosis factor-α secretions (ELISA). RESULTS: At first, a high uptake rate into antigen-presenting cells (MDDC: 16-17%; MDM: 68-75%) was obtained. Although no significant difference in uptake patterns was observed for Pam3Cys adjuvant functionalised and non-functionalised DNA NP, ELISA of interleukin-8 and tumor necrosis factor-α demonstrated clearly that Pam3Cys functionalisation elicited an overall higher immune response with the ranking of Pam3Cys chitosan DNA NPâeuro0/00>âeuro0/00chitosan DNA NPâeuro0/00=âeuro0/00DNA unloaded chitosan NPâeuro0/00>âeuro0/00control (culture medium). CONCLUSIONS: Chitosan-based DNA delivery enables uptake into abluminal MDDC, which are the most immune competent cells in the human lung for the induction of antigen-specific immunity. In addition, Pam3Cys adjuvant functionalisation of chitosan DNA NP enhances significantly an environment favoring recruitment of immune cells together with a Th1 associated (cellular) immune response due to elevated IL-8 and TNF-α levels. The latter renders this DNA delivery approach attractive for potential DNA vaccination against intracellular pathogens in the lung (e.g., Mycobacterium tuberculosis or influenza virus).
Resumo:
The Cretaceous Mont Saint-Hilaire complex (Quebec, Canada) comprises three major rock units that were emplaced in the following sequence: (I) gabbros; (II) diorites; (III) diverse partly agpaitic foid syenites. The major element compositions of the rock-forming minerals, age-corrected Nd and oxygen isotope data for mineral separates and trace element data of Fe-Mg silicates from the various lithologies imply a common source for all units. The distribution of the rare earth elements in clinopyroxene from the gabbros indicates an ocean island basalt type composition for the parental magma. Gabbros record temperatures of 1200 to 800 degrees C, variable silica activities between 0 center dot 7 and 0 center dot 3, and f(O2) values between -0 center dot 5 and +0 center dot 7 (log delta FMQ, where FMQ is fayalite-magnetite-quartz). The diorites crystallized under uniform a(SiO2) (a(SiO2) = 0 center dot 4-0 center dot 5) and more reduced f(O2) conditions (log delta FMQ similar to-1) between similar to 1100 and similar to 800 degrees C. Phase equilibria in various foid syenites indicate that silica activities decrease from 0 center dot 6-0 center dot 3 at similar to 1000 degrees C to < 0 center dot 3 at similar to 550 degrees C. Release of an aqueous fluid during the transition to the hydrothermal stage caused a(SiO2) to drop to very low values, which results from reduced SiO(2) solubilities in aqueous fluids compared with silicate melts. During the hydrothermal stage, high water activities stabilized zeolite-group minerals. Fluid inclusions record a complex post-magmatic history, which includes trapping of an aqueous fluid that unmixed from the restitic foid syenitic magma. Cogenetic aqueous and carbonic fluid inclusions reflect heterogeneous trapping of coexisting immiscible external fluids in the latest evolutionary stage. The O and C isotope characteristics of fluid-inclusion hosted CO(2) and late-stage carbonates imply that the surrounding limestones were the source of the external fluids. The mineral-rich syenitic rocks at Mont Saint-Hilaire evolved as follows: first, alkalis, high field strength and large ion lithophile elements were pre-enriched in the (late) magmatic and subsequent hydrothermal stages; second, percolation of external fluids in equilibrium with the carbonate host-rocks and mixing processes with internal fluids as well as fluid-rock interaction governed dissolution of pre-existing minerals, element transport and precipitation of mineral assemblages determined by locally variable parameters. It is this hydrothermal interplay between internal and external fluids that is responsible for the mineral wealth found at Mont Saint-Hilaire.
Resumo:
Prevention of acid mine drainage (AMD) in sulfide-containing tailings requires the identification of the geochemical processes and element pathways in the early stages of tailing deposition. However, analyses of recently deposited tailings in active tailings impoundments are scarce because mineralogical changes occur near the detection limits of many assays. This study shows that a detailed geochemical study which includes stable isotopes of water (delta H-2, delta O-18), dissolved sulfates (delta S-34, delta O-18) and hydrochernical parameter (pH, Eh, DOC, major and trace elements) from tailings samples taken at different depths in rainy and dry seasons allows the understanding of weathering (oxidation, dissolution, sorption, and desorption), water and element pathways, and mixing processes in active tailings impoundments. Fresh alkaline tailings (pH 9.2-10.2) from the Cu-Mo porphyry deposit in El Teniente, Chile had low carbonate (0.8-1.1 Wt-% CaCO3 equivalent) and sulfide concentrations (0.8-1.3 wt.%, mainly as pyrite). In the alkaline tailings water, Mo and Cu (up to 3.9 mg/L Mo and 0.016 mg/L Cu) were mobile as MoO42- and Cu (OH)(2)(0). During the flotation, tailings water reached equilibrium with gypsum (up to 738 mg/L Ca and 1765 mg/ L SO4). The delta S-34 VS. delta O-18 covariations of dissolved sulfate (2.3 to 4.5% delta S-34 and 4.1 to 6.0 % delta O-18) revealed the sulfate sources: the dissolution of primary sulfates (12.0 to 13.2%. delta S-34, 7.4 to 10.9%.delta O-18) and oxidation of primary sulfides (-6.7 to 1.7%. delta S-34). Sedimented tailings in the tailings impoundment can be divided into three layers with different water sources, element pathways, and geochemical processes. The deeper sediments (> 1 m depth) were infiltrated by catchment water, which partly replaced the original tailings water, especially during the winter season. This may have resulted in the change from alkaline to near-neutral pH and towards lower concentrations of most dissolved elements. The neutral pH and high DOC (up to 99.4 mg/L C) of the catchment water mobilized Cu (up to 0.25 mg/L) due to formation of organic Cu complexes; and Zn (up to 130 mg/L) due to dissolution of Zn oxides and desorption). At I m depth, tailings pore water obtained during the winter season was chemically and isotopically similar to fresh tailings water (pH 9.8-10.6, 26.7-35.5 mg/L Cl, 2.3-6.0 mg/L Mo). During the summer, a vadose zone evolved locally and temporarily up to 1.2 m depth. resulting in a higher concentration of dissolved solids in the pore water due to evaporation. During periodical new deposition of fresh tailings, the geochemistry of the surface layer was geochemically similar to fresh tailings. In periods without deposition, sulfide oxidation was suggested by decreasing pH (7.7-9.5), enrichment of MoO42- and SO42-, and changes in the isotopic composition of dissolved sulfates. Further enrichment for Na, K, Cl, SO4, Mg, Cu, and Mo (up to 23.8 mg/L Mo) resulted from capillary transport towards the surface followed by evaporation and the precipitation of highly soluble efflorescent salts (e.g., mirabilite, syngenite) at the tailing surface during summer. (C) 2008 Elsevier B.V. All rights reserved.