4 resultados para higher order spectra

em Université de Lausanne, Switzerland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Ajjanahalli gold mine is spatially associated with a Late Archean craton-scale shear zone in the eastern Chitradurga greenstone belt of the Dharwar craton, India. Gold mineralization is hosted by an similar to100-m-wide antiform in a banded iron formation. Original magnetite and siderite are replaced by a peak metamorphic alteration assemblage of chlorite, stilpnomelane, minnesotaite, sericite, ankerite, arsenopyrite, pyrite, pyrrhotite, and gold at ca. 300degrees to 350degreesC. Elements enriched in the banded iron formation include Ca, Mg, C, S, An, As, Bi. Cu, Sb, Zn, Pb, Se, Ag, and Te, whereas in the wall rocks As, Cu, Zn, Bi, Ag, and An are only slightly enriched. Strontium correlates with CaO, MgO, CO2, and As, which indicates cogenetic formation of arsenopyrite and Mg-Ca carbonates. The greater extent of alteration in the Fe-rich banded iron formation layers than in the wall rock reflects the greater reactivity of the banded iron formation layers. The ore fluids, as interpreted from their isotopic composition (delta(18)O = 6.5-8.5parts per thousand; initial Sr-87/Sr-86 = 0.7068-0.7078), formed by metamorphic devolatilization of deeper levels of the Chitradurga greenstone belt. Arsenopyrite, chalcopyrite, and pyrrhotite have delta(34)S values within a narrow range between 2.1 and 2.7 per mil, consistent with a sulfur source in Chitradurga greenstone belt lithologies. Based on spatial and temporal relationships between mineralization, local structure development, and sinistral strike-slip deformation in the shear zone at the eastern contact of the Chitradurga greenstone belt, we suggest that the Ajjanahalli gold mineralization formed by fluid infiltration into a low strain area within the first-order structure. The ore fluids were transported along this shear zone into relatively shallow crustal levels during lateral terrane accretion and a change from thrust to transcurrent tectonics. Based on this model of fluid flow, exploration should focus on similar low strain areas or potentially connected higher order splays of the first-order shear zone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract : Auditory spatial functions are of crucial importance in everyday life. Determining the origin of sound sources in space plays a key role in a variety of tasks including orientation of attention, disentangling of complex acoustic patterns reaching our ears in noisy environments. Following brain damage, auditory spatial processing can be disrupted, resulting in severe handicaps. Complaints of patients with sound localization deficits include the inability to locate their crying child or being over-loaded by sounds in crowded public places. Yet, the brain bears a large capacity for reorganization following damage and/or learning. This phenomenon is referred as plasticity and is believed to underlie post-lesional functional recovery as well as learning-induced improvement. The aim of this thesis was to investigate the organization and plasticity of different aspects of auditory spatial functions. Overall, we report the outcomes of three studies: In the study entitled "Learning-induced plasticity in auditory spatial representations" (Spierer et al., 2007b), we focused on the neurophysiological and behavioral changes induced by auditory spatial training in healthy subjects. We found that relatively brief auditory spatial discrimination training improves performance and modifies the cortical representation of the trained sound locations, suggesting that cortical auditory representations of space are dynamic and subject to rapid reorganization. In the same study, we tested the generalization and persistence of training effects over time, as these are two determining factors in the development of neurorehabilitative intervention. In "The path to success in auditory spatial discrimination" (Spierer et al., 2007c), we investigated the neurophysiological correlates of successful spatial discrimination and contribute to the modeling of the anatomo-functional organization of auditory spatial processing in healthy subjects. We showed that discrimination accuracy depends on superior temporal plane (STP) activity in response to the first sound of a pair of stimuli. Our data support a model wherein refinement of spatial representations occurs within the STP and that interactions with parietal structures allow for transformations into coordinate frames that are required for higher-order computations including absolute localization of sound sources. In "Extinction of auditory stimuli in hemineglect: space versus ear" (Spierer et al., 2007a), we investigated auditory attentional deficits in brain-damaged patients. This work provides insight into the auditory neglect syndrome and its relation with neglect symptoms within the visual modality. Apart from contributing to a basic understanding of the cortical mechanisms underlying auditory spatial functions, the outcomes of the studies also contribute to develop neurorehabilitation strategies, which are currently being tested in clinical populations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Auditory spatial functions, including the ability to discriminate between the positions of nearby sound sources, are subserved by a large temporo-parieto-frontal network. With the aim of determining whether and when the parietal contribution is critical for auditory spatial discrimination, we applied single pulse transcranial magnetic stimulation on the right parietal cortex 20, 80, 90 and 150 ms post-stimulus onset while participants completed a two-alternative forced choice auditory spatial discrimination task in the left or right hemispace. Our results reveal that transient TMS disruption of right parietal activity impairs spatial discrimination when applied at 20 ms post-stimulus onset for sounds presented in the left (controlateral) hemispace and at 80 ms for sounds presented in the right hemispace. We interpret our finding in terms of a critical role for controlateral temporo-parietal cortices over initial stages of the building-up of auditory spatial representation and for a right hemispheric specialization in integrating the whole auditory space over subsequent, higher-order processing stages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cytokine BAFF binds to the receptors TACI, BCMA, and BAFF-R on B cells, whereas APRIL binds to TACI and BCMA only. The signaling properties of soluble trimeric BAFF (BAFF 3-mer) were compared with those of higher-order BAFF oligomers. All forms of BAFF bound BAFF-R and TACI, and elicited BAFF-R-dependent signals in primary B cells. In contrast, signaling through TACI in mature B cells or plasmablasts was only achieved by higher-order BAFF and APRIL oligomers, all of which were also po-tent activators of a multimerization-dependent reporter signaling pathway. These results indicate that, although BAFF-R and TACI can provide B cells with similar signals, only BAFF-R, but not TACI, can respond to soluble BAFF 3-mer, which is the main form of BAFF found in circulation. BAFF 60-mer, an efficient TACI agonist, was also detected in plasma of BAFF transgenic and nontransgenic mice and was more than 100-fold more active than BAFF 3-mer for the activation of multimerization-dependent signals. TACI supported survival of activated B cells and plasmablasts in vitro, providing a rational basis to explain the immunoglobulin deficiency reported in TACI-deficient persons.