2 resultados para high z

em Université de Lausanne, Switzerland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The study tests the hypothesis that a low daily fat intake may induce a negative fat balance and impair catch-up growth in stunted children between 3 and 9y of age. DESIGN: Randomized case-control study. SETTING: Three rural villages of the West Kiang District, The Gambia. SUBJECTS: Three groups of 30 stunted but not wasted children (height for age z-score < or = -2.0, weight for height z-score > or = -2.0) 3-9 y of age were selected by anthropometric survey. Groups were matched for age, sex, village, degree of stunting and season. INTERVENTION: Two groups were randomly assigned to be supplemented five days a week for one year with either a high fat (n = 29) or a high carbohydrate biscuit (n = 30) each containing approximately 1600 kJ. The third group was a non supplemented control group (n = 29). Growth, nutritional status, dietary intake, resting energy expenditure and morbidity were compared. RESULTS: Neither the high fat nor the high carbohydrate supplement had an effect on weight or height gain. The high fat supplement did slightly increase adipose tissue mass. There was no effect of supplementation on resting energy expenditure or morbidity. In addition, the annual growth rate was not associated with a morbidity score. CONCLUSIONS: Results show that neither a high fat nor a high carbohydrate supplement given during 12 months to stunted Gambian children induced catch-up growth. The authors suggest that an adverse effect of the environment on catch-up growth persists despite the nutritional interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The long-standing Acid Growth Theory of plant cell elongation posits that auxin promotes cell elongation by stimulating cell wall acidification and thus expansin action. To date, the paucity of pertinent genetic materials has precluded thorough analysis of the importance of this concept in roots. The recent isolation of mutants of the model grass species Brachypodium distachyon with dramatically enhanced root cell elongation due to increased cellular auxin levels has allowed us to address this question. We found that the primary transcriptomic effect associated with elevated steady state auxin concentration in elongating root cells is upregulation of cell wall remodeling factors, notably expansins, while plant hormone signaling pathways maintain remarkable homeostasis. These changes are specifically accompanied by reduced cell wall arabinogalactan complexity but not by increased proton excretion. On the contrary, we observed a tendency for decreased rather than increased proton extrusion from root elongation zones with higher cellular auxin levels. Moreover, similar to Brachypodium, root cell elongation is, in general, robustly buffered against external pH fluctuation in Arabidopsis thaliana However, forced acidification through artificial proton pump activation inhibits root cell elongation. Thus, the interplay between auxin, proton pump activation, and expansin action may be more flexible in roots than in shoots.