6 resultados para high sensitivity troponin
em Université de Lausanne, Switzerland
Resumo:
After ischemic stroke, the ischemic damage to brain tissue evolves over time and with an uneven spatial distribution. Early irreversible changes occur in the ischemic core, whereas, in the penumbra, which receives more collateral blood flow, the damage is more mild and delayed. A better characterization of the penumbra, irreversibly damaged and healthy tissues is needed to understand the mechanisms involved in tissue death. MRSI is a powerful tool for this task if the scan time can be decreased whilst maintaining high sensitivity. Therefore, we made improvements to a (1) H MRSI protocol to study middle cerebral artery occlusion in mice. The spatial distribution of changes in the neurochemical profile was investigated, with an effective spatial resolution of 1.4 μL, applying the protocol on a 14.1-T magnet. The acquired maps included the difficult-to-separate glutamate and glutamine resonances and, to our knowledge, the first mapping of metabolites γ-aminobutyric acid and glutathione in vivo, within a metabolite measurement time of 45 min. The maps were in excellent agreement with findings from single-voxel spectroscopy and offer spatial information at a scan time acceptable for most animal models. The metabolites measured differed with respect to the temporal evolution of their concentrations and the localization of these changes. Specifically, lactate and N-acetylaspartate concentration changes largely overlapped with the T(2) -hyperintense region visualized with MRI, whereas changes in cholines and glutathione affected the entire middle cerebral artery territory. Glutamine maps showed elevated levels in the ischemic striatum until 8 h after reperfusion, and until 24 h in cortical tissue, indicating differences in excitotoxic effects and secondary energy failure in these tissue types. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
We have used massively parallel signature sequencing (MPSS) to sample the transcriptomes of 32 normal human tissues to an unprecedented depth, thus documenting the patterns of expression of almost 20,000 genes with high sensitivity and specificity. The data confirm the widely held belief that differences in gene expression between cell and tissue types are largely determined by transcripts derived from a limited number of tissue-specific genes, rather than by combinations of more promiscuously expressed genes. Expression of a little more than half of all known human genes seems to account for both the common requirements and the specific functions of the tissues sampled. A classification of tissues based on patterns of gene expression largely reproduces classifications based on anatomical and biochemical properties. The unbiased sampling of the human transcriptome achieved by MPSS supports the idea that most human genes have been mapped, if not functionally characterized. This data set should prove useful for the identification of tissue-specific genes, for the study of global changes induced by pathological conditions, and for the definition of a minimal set of genes necessary for basic cell maintenance. The data are available on the Web at http://mpss.licr.org and http://sgb.lynxgen.com.
Resumo:
Cerebral metabolism is compartmentalized between neurons and glia. Although glial glycolysis is thought to largely sustain the energetic requirements of neurotransmission while oxidative metabolism takes place mainly in neurons, this hypothesis is matter of debate. The compartmentalization of cerebral metabolic fluxes can be determined by (13)C nuclear magnetic resonance (NMR) spectroscopy upon infusion of (13)C-enriched compounds, especially glucose. Rats under light α-chloralose anesthesia were infused with [1,6-(13)C]glucose and (13)C enrichment in the brain metabolites was measured by (13)C NMR spectroscopy with high sensitivity and spectral resolution at 14.1 T. This allowed determining (13)C enrichment curves of amino acid carbons with high reproducibility and to reliably estimate cerebral metabolic fluxes (mean error of 8%). We further found that TCA cycle intermediates are not required for flux determination in mathematical models of brain metabolism. Neuronal tricarboxylic acid cycle rate (V(TCA)) and neurotransmission rate (V(NT)) were 0.45 ± 0.01 and 0.11 ± 0.01 μmol/g/min, respectively. Glial V(TCA) was found to be 38 ± 3% of total cerebral oxidative metabolism, accounting for more than half of neuronal oxidative metabolism. Furthermore, glial anaplerotic pyruvate carboxylation rate (V(PC)) was 0.069 ± 0.004 μmol/g/min, i.e., 25 ± 1% of the glial TCA cycle rate. These results support a role of glial cells as active partners of neurons during synaptic transmission beyond glycolytic metabolism.
Resumo:
AIM: To confirm the accuracy of sentinel node biopsy (SNB) procedure and its morbidity, and to investigate predictive factors for SN status and prognostic factors for disease-free survival (DFS) and disease-specific survival (DSS). MATERIALS AND METHODS: Between October 1997 and December 2004, 327 consecutive patients in one centre with clinically node-negative primary skin melanoma underwent an SNB by the triple technique, i.e. lymphoscintigraphy, blue-dye and gamma-probe. Multivariate logistic regression analyses as well as the Kaplan-Meier were performed. RESULTS: Twenty-three percent of the patients had at least one metastatic SN, which was significantly associated with Breslow thickness (p<0.001). The success rate of SNB was 99.1% and its morbidity was 7.6%. With a median follow-up of 33 months, the 5-year DFS/DSS were 43%/49% for patients with positive SN and 83.5%/87.4% for patients with negative SN, respectively. The false-negative rate of SNB was 8.6% and sensitivity 91.4%. On multivariate analysis, DFS was significantly worsened by Breslow thickness (RR=5.6, p<0.001), positive SN (RR=5.0, p<0.001) and male sex (RR=2.9, p=0.001). The presence of a metastatic SN (RR=8.4, p<0.001), male sex (RR=6.1, p<0.001), Breslow thickness (RR=3.2, p=0.013) and ulceration (RR=2.6, p=0.015) were significantly associated with a poorer DSS. CONCLUSION: SNB is a reliable procedure with high sensitivity (91.4%) and low morbidity. Breslow thickness was the only statistically significant parameter predictive of SN status. DFS was worsened in decreasing order by Breslow thickness, metastatic SN and male gender. Similarly DSS was significantly worsened by a metastatic SN, male gender, Breslow thickness and ulceration. These data reinforce the SN status as a powerful staging procedure
Resumo:
To estimate the prevalence of metabolically healthy obesity (MHO) according to different definitions. Population-based sample of 2803 women and 2557 men participated in the study. Metabolic abnormalities were defined using six sets of criteria, which included different combinations of the following: waist; blood pressure; total, high-density lipoprotein or low-density lipoprotein-cholesterol; triglycerides; fasting glucose; homeostasis model assessment; high-sensitivity C-reactive protein; personal history of cardiovascular, respiratory or metabolic diseases. For each set, prevalence of MHO was assessed for body mass index (BMI); waist or percent body fat. Among obese (BMI 30 kg/m(2)) participants, prevalence of MHO ranged between 3.3 and 32.1% in men and between 11.4 and 43.3% in women according to the criteria used. Using abdominal obesity, prevalence of MHO ranged between 5.7 and 36.7% (men) and 12.2 and 57.5% (women). Using percent body fat led to a prevalence of MHO ranging between 6.4 and 43.1% (men) and 12.0 and 55.5% (women). MHO participants had a lower odd of presenting a family history of type 2 diabetes. After multivariate adjustment, the odds of presenting with MHO decreased with increasing age, whereas no relationship was found with gender, alcohol consumption or tobacco smoking using most sets of criteria. Physical activity was positively related, whereas increased waist was negatively related with BMI-defined MHO. MHO prevalence varies considerably according to the criteria used, underscoring the need for a standard definition of this metabolic entity. Physical activity increases the likelihood of presenting with MHO, and MHO is associated with a lower prevalence of family history of type 2 diabetes.
Resumo:
OBJECTIVE: To assess the association between socioeconomic status (SES) and inflammatory markers using two different European population samples. METHODS: We used data from the CoLaus (N=6412, Lausanne, Switzerland) and EPIPorto (N=1205, Porto, Portugal) studies. Education and occupational position were used as indicators of socioeconomic status (SES). High-sensitivity C-reactive protein (hs-CRP) was available for both cohorts. Interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) were available in CoLaus; leukocyte count and fibrinogen in EPIPorto. RESULTS: We showed that low SES was significantly associated with high inflammation in both studies. We also showed that behavioural factors contributed the most to SES differences in inflammation. In both studies the larger difference between the lowest and the highest SES was observed for hs-CRP. In the Swiss sample, a linear association between education and hs-CRP persisted after adjustment for all mediating factors and confounders considered (p for linear trend <0.001). CONCLUSION: Large social differences exist in inflammatory activity, in part independently from demographic and behavioural factors, chronic conditions and medication use. SES differences in inflammation are also similar in countries with different underlying socioeconomic conditions.