210 resultados para high density single nucleotide polymorphism microarray

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Essential hypertension is a multifactorial disorder and is the main risk factor for renal and cardiovascular complications. The research on the genetics of hypertension has been frustrated by the small predictive value of the discovered genetic variants. The HYPERGENES Project investigated associations between genetic variants and essential hypertension pursuing a 2-stage study by recruiting cases and controls from extensively characterized cohorts recruited over many years in different European regions. The discovery phase consisted of 1865 cases and 1750 controls genotyped with 1M Illumina array. Best hits were followed up in a validation panel of 1385 cases and 1246 controls that were genotyped with a custom array of 14 055 markers. We identified a new hypertension susceptibility locus (rs3918226) in the promoter region of the endothelial NO synthase gene (odds ratio: 1.54 [95% CI: 1.37-1.73]; combined P=2.58 · 10(-13)). A meta-analysis, using other in silico/de novo genotyping data for a total of 21 714 subjects, resulted in an overall odds ratio of 1.34 (95% CI: 1.25-1.44; P=1.032 · 10(-14)). The quantitative analysis on a population-based sample revealed an effect size of 1.91 (95% CI: 0.16-3.66) for systolic and 1.40 (95% CI: 0.25-2.55) for diastolic blood pressure. We identified in silico a potential binding site for ETS transcription factors directly next to rs3918226, suggesting a potential modulation of endothelial NO synthase expression. Biological evidence links endothelial NO synthase with hypertension, because it is a critical mediator of cardiovascular homeostasis and blood pressure control via vascular tone regulation. This finding supports the hypothesis that there may be a causal genetic variation at this locus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: HIV-infected individuals have an increased risk of myocardial infarction. Antiretroviral therapy (ART) is regarded as a major determinant of dyslipidemia in HIV-infected individuals. Previous genetic studies have been limited by the validity of the single-nucleotide polymorphisms (SNPs) interrogated and by cross-sectional design. Recent genome-wide association studies have reliably associated common SNPs to dyslipidemia in the general population. METHODS AND RESULTS: We validated the contribution of 42 SNPs (33 identified in genome-wide association studies and 9 previously reported SNPs not included in genome-wide association study chips) and of longitudinally measured key nongenetic variables (ART, underlying conditions, sex, age, ethnicity, and HIV disease parameters) to dyslipidemia in 745 HIV-infected study participants (n=34 565 lipid measurements; median follow-up, 7.6 years). The relative impact of SNPs and ART to lipid variation in the study population and their cumulative influence on sustained dyslipidemia at the level of the individual were calculated. SNPs were associated with lipid changes consistent with genome-wide association study estimates. SNPs explained up to 7.6% (non-high-density lipoprotein cholesterol), 6.2% (high-density lipoprotein cholesterol), and 6.8% (triglycerides) of lipid variation; ART explained 3.9% (non-high-density lipoprotein cholesterol), 1.5% (high-density lipoprotein cholesterol), and 6.2% (triglycerides). An individual with the most dyslipidemic antiretroviral and genetic background had an approximately 3- to 5-fold increased risk of sustained dyslipidemia compared with an individual with the least dyslipidemic therapy and genetic background. CONCLUSIONS: In the HIV-infected population treated with ART, the weight of the contribution of common SNPs and ART to dyslipidemia was similar. When selecting an ART regimen, genetic information should be considered in addition to the dyslipidemic effects of ART agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In order to provide a cost-effective tool to analyse pharmacogenetic markers in malaria treatment, DNA microarray technology was compared with sequencing of polymerase chain reaction (PCR) fragments to detect single nucleotide polymorphisms (SNPs) in a larger number of samples. Methods: The microarray was developed to affordably generate SNP data of genes encoding the human cytochrome P450 enzyme family (CYP) and N-acetyltransferase-2 (NAT2) involved in antimalarial drug metabolisms and with known polymorphisms, i.e. CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, and NAT2. Results: For some SNPs, i.e. CYP2A6*2, CYP2B6*5, CYP2C8*3, CYP2C9*3/*5, CYP2C19*3, CYP2D6*4 and NAT2*6/*7/*14, agreement between both techniques ranged from substantial to almost perfect (kappa index between 0.61 and 1.00), whilst for other SNPs a large variability from slight to substantial agreement (kappa index between 0.39 and 1.00) was found, e. g. CYP2D6*17 (2850C>T), CYP3A4*1B and CYP3A5*3. Conclusion: The major limit of the microarray technology for this purpose was lack of robustness and with a large number of missing data or with incorrect specificity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Metabolic complications, including cardiovascular events and diabetes mellitus (DM), are a major long-term concern in human immunodeficiency virus (HIV)-infected individuals. Recent genome-wide association studies have reliably associated multiple single nucleotide polymorphisms (SNPs) to DM in the general population. METHODS: We evaluated the contribution of 22 SNPs identified in genome-wide association studies and of longitudinally measured clinical factors to DM. We genotyped all 94 white participants in the Swiss HIV Cohort Study who developed DM from 1 January 1999 through 31 August 2009 and 550 participants without DM. Analyses were based on 6054 person-years of follow-up and 13,922 measurements of plasma glucose. RESULTS: The contribution to DM risk explained by SNPs (14% of DM variability) was larger than the contribution to DM risk explained by current or cumulative exposure to different antiretroviral therapy combinations (3% of DM variability). Participants with the most unfavorable genetic score (representing 12% and 19% of the study population, respectively, when applying 2 different genetic scores) had incidence rate ratios for DM of 3.80 (95% confidence interval [CI], 2.05-7.06) and 2.74 (95% CI, 1.53-4.88), respectively, compared with participants with a favorable genetic score. However, addition of genetic data to clinical risk factors that included body mass index only slightly improved DM prediction. CONCLUSIONS: In white HIV-infected persons treated with antiretroviral therapy, the DM effect of genetic variants was larger than the potential toxic effects of antiretroviral therapy. SNPs contributed significantly to DM risk, but their addition to a clinical model improved DM prediction only slightly, similar to studies in the general population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The slow vacuolar (SV) channel, a Ca2+-regulated vacuolar cation conductance channel, in Arabidopsis thaliana is encoded by the single-copy gene AtTPC1. Although loss-of-function tpc1 mutants were reported to exhibit a stoma phenotype, knowledge about the underlying guard cell-specific features of SV/TPC1 channels is still lacking. Here we demonstrate that TPC1 transcripts and SV current density in guard cells were much more pronounced than in mesophyll cells. Furthermore, the SV channel in motor cells exhibited a higher cytosolic Ca2+ sensitivity than in mesophyll cells. These distinct features of the guard cell SV channel therefore probably account for the published stomatal phenotype of tpc1-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: High baseline levels of IP-10 predict a slower first phase decline in HCV RNA and a poor outcome following interferon/ribavirin therapy in patients with chronic hepatitis C. Several recent studies report that single nucleotide polymorphisms (SNPs) adjacent to IL28B predict spontaneous resolution of HCV infection and outcome of treatment among HCV genotype 1 infected patients. METHODS AND FINDINGS: In the present study, we correlated the occurrence of variants at three such SNPs (rs12979860, rs12980275, and rs8099917) with pretreatment plasma IP-10 and HCV RNA throughout therapy within a phase III treatment trial (HCV-DITTO) involving 253 Caucasian patients. The favorable SNP variants (CC, AA, and TT, respectively) were associated with lower baseline IP-10 (P = 0.02, P = 0.01, P = 0.04) and were less common among HCV genotype 1 infected patients than genotype 2/3 (P<0.0001, P<0.0001, and P = 0.01). Patients carrying favorable SNP genotypes had higher baseline viral load than those carrying unfavorable variants (P = 0.0013, P = 0.029, P = 0.0004 respectively). Among HCV genotype 1 infected carriers of the favorable C, A, or T alleles, IP-10 below 150 pg/mL significantly predicted a more pronounced reduction of HCV RNA from day 0 to 4 (first phase decline), which translated into increased rates of RVR (62%, 53%, and 39%) and SVR (85%, 76%, and 75% respectively) among homozygous carriers with baseline IP-10 below 150 pg/mL. In multivariate analyses of genotype 1-infected patients, baseline IP-10 and C genotype at rs12979860 independently predicted the first phase viral decline and RVR, which in turn independently predicted SVR. CONCLUSIONS: Concomitant assessment of pretreatment IP-10 and IL28B-related SNPs augments the prediction of the first phase decline in HCV RNA, RVR, and final therapeutic outcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intraspecific genetic variation for morphological traits is observed in many organisms. In Arabidopsis thaliana, alleles responsible for intraspecific morphological variation are increasingly being identified. However, the fitness consequences remain unclear in most cases. Here, the fitness effects of alleles of the BRX gene are investigated. A brx loss-of-function allele, which was found in a natural accession, results in a highly branched but poorly elongated root system. Comparison between the control accession Sav-0 and an introgression of brx into this background (brxS) indicated that, surprisingly, brx loss of function did not negatively affect fitness in pure stands. However, in mixed, well-watered stands brxS performance and reproductive output decreased significantly, as the proportion of Sav-0 neighbors increased. Additional comparisons between brxS and a brxS line that was complemented by a BRX transgene confirmed a direct effect of the loss-of-function allele on plant performance, as indicated by restored competitive ability of the transgenic genotype. Further, because plant height was very similar across genotypes and because the experimental setup largely excluded shading effects, the impaired competitiveness of the brx loss-of-function genotype likely reflects below-ground competition. In summary, these data reveal conditional fitness effects of a single gene polymorphism in response to intraspecific competition in Arabidopsis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARYThe incidence of type 2 diabetes (T2D) is increasing worldwide and is linked to the enhancement of obesity. The principal cause of T2D development is insulin resistance, which lead to the increase of insulin production by the pancreatic beta-cells. In a pathological environment, namely dyslipidaemia, hyperglycaemia and inflammation, beta-cell compensation will fail in more vulnerable cells and diabetes will occur. High Density Lipoproteins (HDLs), commonly named "good cholesterol" are known to be atheroprotective. Low levels of HDLs are associated with increased prevalence of cardiovascular disease but are also an independent risk factor for the development of T2D. HDLs were demonstrated to protect pancreatic beta-cells against several stresses. However the molecular mechanisms of the protection are unknown and the objectives of this work were to try to elucidate the way how HDLs protect. The first approach was a broad screening of genes regulated by the stress and HDLs. A microarray analysis was performed on beta-cells stressed by serum deprivation and rescued by HDLs. Among the genes regulated, we focused on 4E-BP1, a cap-dependent translational inhibitor. In addition, HDLs were also found to protect against several other stresses.Endoplasmic reticulum (ER) stress is a mechanism that may play a role in the onset of T2D. The unfolded protein response (UPR) is a physiological process that aims at maintaining ER homeostasis in conditions where the protein folding and secretion is perturbed. Specific signalling pathways are involved in the increase of folding, export and degradation capacity of the ER. However, in case where the stress is prolonged, this mechanism turns to be pathological, by inducing cell death effector pathways, leading to beta-cell apoptosis. In our study, we discovered that HDLs were protective against ER stress induced by drugs and physiological stresses such as saturated free fatty acids. HDLs protected beta-cells by promoting ER homeostasis via the improvement of the folding and trafficking od proteins from the ER to the Golgi apparatus.Altogether our results suggest that HDLs are important for beta-cell function and survival, by protecting them from several stresses and acting on ER homeostasis. This suggests that attempt in keeping normal HDLs levels or function in patients is crucial to lessen the development of T2D.RÉSUMÉL'incidence du diabète de type 2 est en constante augmentation et est fortement liée à l'accroissement du taux d'obésité. La cause principale du diabète de type 2 est la résistance à l'insuline, qui entraîne une surproduction d'insuline par les cellules bêta pancréatiques. Dans un environnement pathologique associé à l'obésité (dyslipidémie, hyperglycémie et inflammation), les cellules bêta les plus vulnérables ne sont plus capables de compenser en augmentant leur production d'insuline, dysfonctionnent, ce qui conduit à leur mort par apoptose. Les lipoprotéines de hautes densités (HDLs), communément appelées (( bon cholestérol », sont connues pour leurs propriétés protectrices contre l'athérosclérose. Des niveaux bas de HDLs sanguins sont associés au risque de développer un diabète de type 2. Les HDLs ont également montré des propriétés protectrices contre divers stresses dans la cellule bêta. Cependant, les mécanismes de protection restent encore inconnus et l'objectif de ce travail a été d'investiguer les mécanismes moléculaires de protection des HDLs. La première approche choisie a été une étude du profil d'expression génique par puce à ADN afin d'identifier les gènes régulés par le stress et les HDLs. Parmi les gènes régulés, notre intérêt s'est porté sur 4E-BP1, un inhibiteur de la traduction coiffe- dépendante, dont l'induction par le stress était corrélée avec une augmentation de l'apoptose. Suite à cette étude, les HDLs ont également montrés un rôle protecteur contre d'autres stresses. Il s'agit particulièrement du stress du réticulum endoplasmique (RE), qui est un mécanisme qui semble jouer un rôle clé dans le développement du diabète. L'UPR (« Unfolded Protein Response ») est un processus physiologique tendant à maintenir l'homéostasie du réticulum endoplasmique, organelle prépondérante pour la fonction des cellules sécrétrices, notamment lorsqu'elle est soumise à des conditions extrêmes telles que des perturbations de la conformation tertiaire des protéines ou de la sécrétion. Dans ces cas, des voies de signalisation moléculaires sont activées, ce qui mène à l'exportation des protéines mal repliées, à leur dégradation et à l'augmentation de l'expression de chaperonnes capables d'améliorer le repliement des protéines mal formées. Toutefois, en cas de stress persistant, ce mécanisme de protection s'avère être pathologique. En induisant des voies de signalisation effectrices de l'apoptose, il conduit finalement au développement du diabète. Dans cette étude, nous avons démontré que les HDLs étaient capables de protéger la cellule bêta contre le stress du RE induits par des inhibiteurs (thapsigargine, tunicamycine) ou des stresses physiologiques tels que les acides gras libres. Les HDLs ont la capacité d'améliorer l'homéostasie du RE, notamment en favorisant le repliement et le transfert des protéines du RE à l'appareil de Golgi.En résumé, ces données suggèrent que les HDLs sont bénéfiques pour la survie des cellules bêta soumises à des stresses impliqués dans le développement du diabète, notamment en restaurant l'homéostasie du RE. Ces résultats conduisent à soutenir que le maintien des taux de cholestérol joue un rôle important dans la limitation de l'incidence du diabète.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last three decades, cytogenetic analysis of malignancies has become an integral part of disease evaluation and prediction of prognosis or responsiveness to therapy. In most diagnostic laboratories, conventional karyotyping, in conjunction with targeted fluorescence in situ hybridization analysis, is routinely performed to detect recurrent aberrations with prognostic implications. However, the genetic complexity of cancer cells requires a sensitive genome-wide analysis, enabling the detection of small genomic changes in a mixed cell population, as well as of regions of homozygosity. The advent of comprehensive high-resolution genomic tools, such as molecular karyotyping using comparative genomic hybridization or single-nucleotide polymorphism microarrays, has overcome many of the limitations of traditional cytogenetic techniques and has been used to study complex genomic lesions in, for example, leukemia. The clinical impact of the genomic copy-number and copy-neutral alterations identified by microarray technologies is growing rapidly and genome-wide array analysis is evolving into a diagnostic tool, to better identify high-risk patients and predict patients' outcomes from their genomic profiles. Here, we review the added clinical value of an array-based genome-wide screen in leukemia, and discuss the technical challenges and an interpretation workflow in applying arrays in the acquired cytogenetic diagnostic setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: To evaluate the influence of genetic polymorphisms on the susceptibility to Candida colonization and intra-abdominal candidiasis, a blood culture-negative life-threatening infection in high-risk surgical ICU patients. DESIGN: Prospective observational cohort study. SETTING: Surgical ICUs from two University hospitals of the Fungal Infection Network of Switzerland. PATIENTS: Eighty-nine patients at high risk for intra-abdominal candidiasis (68 with recurrent gastrointestinal perforation and 21 with acute necrotizing pancreatitis). MEASUREMENTS AND MAIN RESULTS: Eighteen single-nucleotide polymorphisms in 16 genes previously associated with development of fungal infections were analyzed from patient's DNA by using an Illumina Veracode genotyping platform. Candida colonization was defined by recovery of Candida species from at least one nonsterile site by twice weekly monitoring of cultures from oropharynx, stools, urine, skin, and/or respiratory tract. A corrected colonization index greater than or equal to 0.4 defined "heavy" colonization. Intra-abdominal candidiasis was defined by the presence of clinical symptoms and signs of peritonitis or intra-abdominal abscess and isolation of Candida species either in pure or mixed culture from intraoperatively collected abdominal samples. Single-nucleotide polymorphisms in three innate immune genes were associated with development of a Candida corrected colonization index greater than or equal to 0.4 (Toll-like receptor rs4986790, hazard ratio = 3.39; 95% CI, 1.45-7.93; p = 0.005) or occurrence of intra-abdominal candidiasis (tumor necrosis factor-α rs1800629, hazard ratio = 4.31; 95% CI, 1.85-10.1; p= 0.0007; β-defensin 1 rs1800972, hazard ratio = 3.21; 95% CI, 1.36-7.59; p = 0.008). CONCLUSION: We report a strong association between the promoter rs1800629 single-nucleotide polymorphism in tumor necrosis factor-α and an increased susceptibility to intra-abdominal candidiasis in a homogenous prospective cohort of high-risk surgical ICU patients. This finding highlights the relevance of the tumor necrosis factor-α functional polymorphism in immune response to fungal pathogens. Immunogenetic profiling in patients at clinical high risk followed by targeted antifungal interventions may improve the prevention or preemptive management of this life-threatening infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivation: Genome-wide association studies have become widely used tools to study effects of genetic variants on complex diseases. While it is of great interest to extend existing analysis methods by considering interaction effects between pairs of loci, the large number of possible tests presents a significant computational challenge. The number of computations is further multiplied in the study of gene expression quantitative trait mapping, in which tests are performed for thousands of gene phenotypes simultaneously. Results: We present FastEpistasis, an efficient parallel solution extending the PLINK epistasis module, designed to test for epistasis effects when analyzing continuous phenotypes. Our results show that the algorithm scales with the number of processors and offers a reduction in computation time when several phenotypes are analyzed simultaneously. FastEpistasis is capable of testing the association of a continuous trait with all single nucleotide polymorphism ( SNP) pairs from 500 000 SNPs, totaling 125 billion tests, in a population of 5000 individuals in 29, 4 or 0.5 days using 8, 64 or 512 processors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Evidence has accumulated in recent years suggestive of a genetic basis for a susceptibility to the development of radiation injury after cancer radiotherapy. The purpose of this study was to assess whether patients with severe radiation-induced sequelae (RIS; i.e., National Cancer Institute/CTCv3.0 grade, > or =3) display both a low capacity of radiation-induced CD8 lymphocyte apoptosis (RILA) in vitro and possess certain single nucleotide polymorphisms (SNP) located in candidate genes associated with the response of cells to radiation. EXPERIMENTAL DESIGN: DNA was isolated from blood samples obtained from patients (n = 399) included in the Swiss prospective study evaluating the predictive effect of in vitro RILA and RIS. SNPs in the ATM, SOD2, XRCC1, XRCC3, TGFB1, and RAD21 genes were screened in patients who experienced severe RIS (group A, n = 16) and control subjects who did not manifest any evidence of RIS (group B, n = 18). RESULTS: Overall, 13 and 21 patients were found to possess a total of <4 and > or =4 SNPs in the candidate genes. The median (range) RILA in group A was 9.4% (5.3-16.5) and 94% (95% confidence interval, 70-100) of the patients (15 of 16) had > or =4 SNPs. In group B, median (range) RILA was 25.7% (20.2-43.2) and 33% (95% confidence interval, 13-59) of patients (6 of 18) had > or =4 SNPs (P < 0.001). CONCLUSIONS: The results of this study suggest that patients with severe RIS possess 4 or more SNPs in candidate genes and low radiation-induced CD8 lymphocyte apoptosis in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A linkage between obesity-related phenotypes and the 2p21-23 locus has been reported previously. The urocortin (UCN) gene resides at this interval, and its protein decreases appetite behavior, suggesting that UCN may be a candidate gene for susceptibility to obesity. We localized the UCN gene by radiation hybrid mapping, and the surrounding markers were genotyped in a collection of French families. Evidence for linkage was shown between the marker D2S165 and leptin levels (LOD score, 1.34; P = 0.006) and between D2S2247 and the z-score of body mass index (LOD score, 1.829; P = 0.0019). The gene was screened for SNPs in 96 obese patients. Four new variants were established. Two single nucleotide polymorphisms were located in the promoter (-535 A-->G, -286 G-->A), one in intron 1 (+31 C-->G), and one in the 3'-untranslated region (+34 C-->T). Association studies in cohorts of 722 unrelated obese and 381 control subjects and transmission disequilibrium tests, performed for the two frequent promoter polymorphisms, in 120 families (894 individuals) showed that no association was present between these variants and obesity, obesity-related phenotypes, and diabetes. Thus, our analyses of the genetic variations of the UCN gene suggest that, at least in French Caucasians, they do not represent a major cause of obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The epithelial sodium channel (ENaC) is composed of three homologous subunits: alpha, beta, and gamma. Mutations in the Scnn1b and Scnn1g genes, which encode the beta and the gamma subunits of ENaC, cause a severe form of hypertension (Liddle syndrome). The contribution of genetic variants within the Scnn1a gene, which codes for the alpha subunit, has not been investigated. METHODS: We screened for mutations in the COOH termini of the alpha and beta subunits of ENaC. Blood from 184 individuals from 31 families participating in a study on the genetics of hypertension were analyzed. Exons 13 of Scnn1a and Scnn1b, which encode the second transmembrane segment and the COOH termini of alpha- and beta-ENaC, respectively, were amplified from pooled DNA samples of members of each family by PCR. Constant denaturant capillary electrophoresis (CDCE) was used to detect mutations in PCR products of the pooled DNA samples. RESULTS: The detection limit of CDCE for ENaC variants was 1%, indicating that all members of any family or up to 100 individuals can be analyzed in one CDCE run. CDCE profiles of the COOH terminus of alpha-ENaC in pooled family members showed that the 31 families belonged to four groups and identified families with genetic variants. Using this approach, we analyzed 31 rather than 184 samples. Individual CDCE analysis of members from families with different pooled CDCE profiles revealed five genotypes containing 1853G-->T and 1987A-->G polymorphisms. The presence of the mutations was confirmed by DNA sequencing. For the COOH terminus of beta-ENaC, only one family showed a different CDCE profile. Two members of this family (n = 5) were heterozygous at 1781C-->T (T594M). CONCLUSION: CDCE rapidly detects point mutations in these candidate disease genes.