69 resultados para glucose photocatalysis selective oxidation titania gold silver nanoparticles
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: When fructose is ingested together with glucose (GLUFRU) during exercise, plasma lactate and exogenous carbohydrate oxidation rates are higher than with glucose alone. OBJECTIVE: The objective was to investigate to what extent GLUFRU increased lactate kinetics and oxidation rate and gluconeogenesis from lactate (GNG(L)) and from fructose (GNG(F)). DESIGN: Seven endurance-trained men performed 120 min of exercise at approximately 60% VOmax (maximal oxygen consumption) while ingesting 1.2 g glucose/min + 0.8 g of either glucose or fructose/min (GLUFRU). In 2 trials, the effects of glucose and GLUFRU on lactate and glucose kinetics were investigated with glucose and lactate tracers. In a third trial, labeled fructose was added to GLUFRU to assess fructose disposal. RESULTS: In GLUFRU, lactate appearance (120 +/- 6 mumol . kg(1) . min(1)), lactate disappearance (121 +/- 7 mumol . kg(1) . min(1)), and oxidation (127 +/- 12 mumol . kg(1) . min(1)) rates increased significantly (P < 0.001) in comparison with glucose alone (94 +/- 16, 95 +/- 16, and 97 +/- 16 mumol . kg(1) . min(1), respectively). GNG(L) was negligible in both conditions. In GLUFRU, GNG(F) and exogenous fructose oxidation increased with time and leveled off at 18.8 +/- 3.7 and 38 +/- 4 mumol . kg(1) . min(1), respectively, at 100 min. Plasma glucose appearance rate was significantly higher (P < 0.01) in GLUFRU (91 +/- 6 mumol . kg(1) . min(1)) than in glucose alone (82 +/- 9 mumol . kg(1) . min(1)). Carbohydrate oxidation rate was higher (P < 0.05) in GLUFRU. CONCLUSIONS: Fructose increased total carbohydrate oxidation, lactate production and oxidation, and GNG(F). Fructose oxidation was explained equally by fructose-derived lactate and glucose oxidation, most likely in skeletal and cardiac muscle. This trial was registered at clinicaltrials.gov as NCT01128647.
Resumo:
To determine the mechanisms that prevent an increase in gluconeogenesis from increasing hepatic glucose output, six healthy women were infused with [1-13C]fructose (22 mumol.kg-1.min-1), somatostatin, insulin, and glucagon. In control experiment, non-13C-enriched fructose was infused at the same rate without somatostatin, and [U-13C]glucose was infused to measure specifically plasma glucose oxidation. Endogenous glucose production (EGP, [6,6-2H]glucose), net carbohydrate oxidation (CHOox, indirect calorimetry), and fructose oxidation (13CO2) were measured. EGP rate did not increase after fructose infusion with (13.1 +/- 1.2 vs. 12.9 +/- 0.3 mumol.kg-1.min-1) and without (10.3 +/- 0.5 vs. 9.7 +/- 0.5 mumol.kg-1.min-1) somatostatin, despite the fact that gluconeogenesis increased. Nonoxidative fructose disposal, corresponding mainly to glycogen synthesis, was threefold net glycogen deposition, the latter calculated as fructose infusion minus CHOox (14.8 +/- 1.1 and 4.3 +/- 2.0 mumol.kg-1.min-1). It is concluded that 1) the mechanism by which EGP remains constant when gluconeogenesis from fructose increases is independent of changes in insulin and 2) simultaneous breakdown and synthesis of glycogen occurred during fructose infusion.
Resumo:
The oxidative and nonoxidative glucose metabolism represent the two major mechanisms of the utilization of a glucose load. Eight normal subjects were administered oral loads of 50, 100 and 150 g glucose and gas exchange measurements were performed for eight hours by means of computerized continuous indirect calorimetry. The glycemic peaks were almost identical with all three doses with a rise to between 141 and 147 mg/dl at 60 min. The fall back to basal level was reached later with the high than with the low glucose doses. The glucose oxidation rate rose to values between 223 and 253 mg/min after the three glucose doses, but while falling immediately after the peak at 120 min following the 50 g load, the glucose oxidation rate remained at its maximum rate until 210 min for the 100 g glucose load and plateaued up to 270 min for the 150 g glucose dose. The oxidation rates then fell gradually to reach basal levels at 270, 330 and 420 min according to the increasing size of the load. Altogether 55 +/- 3 g glucose were oxidized during the 8 hours following the 50 g glucose load, 75 +/- 3 g after the 100 g load and 80 +/- 5 g after the 150 g load. The nonoxidative glucose disposal, which corresponds essentially to glucose storage, varied according to the size of the glucose load, with uptakes of 20 +/- 1, 60 +/- 1 and 110 +/- 1 g glucose 180 min after the 50, 100 and 150 g glucose loads respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The cellular response to fasting and starvation in tissues such as heart, skeletal muscle, and liver requires peroxisome proliferator-activated receptor-alpha (PPARalpha)-dependent up-regulation of energy metabolism toward fatty acid oxidation (FAO). PPARalpha null (PPARalphaKO) mice develop hyperinsulinemic hypoglycemia in the fasting state, and we previously showed that PPARalpha expression is increased in islets at low glucose. On this basis, we hypothesized that enhanced PPARalpha expression and FAO, via depletion of lipid-signaling molecule(s) for insulin exocytosis, are also involved in the normal adaptive response of the islet to fasting. Fasted PPARalphaKO mice compared with wild-type mice had supranormal ip glucose tolerance due to increased plasma insulin levels. Isolated islets from the PPARalpha null mice had a 44% reduction in FAO, normal glucose use and oxidation, and enhanced glucose-induced insulin secretion. In normal rats, fasting for 24 h increased islet PPARalpha, carnitine palmitoyltransferase 1, and uncoupling protein-2 mRNA expression by 60%, 62%, and 82%, respectively. The data are consistent with the view that PPARalpha, via transcriptionally up-regulating islet FAO, can reduce insulin secretion, and that this mechanism is involved in the normal physiological response of the pancreatic islet to fasting such that hypoglycemia is avoided.
Resumo:
Ingestion of pure fructose stimulates de novo lipogenesis and gluconeogenesis. This may however not be relevant to typical nutritional situations, where fructose is invariably ingested with glucose. We therefore assessed the metabolic fate of fructose incorporated in a mixed meal without or with glucose in eight healthy volunteers. Each participant was studied over six hours after the ingestion of liquid meals containing either 13C-labelled fructose, unlabeled glucose, lipids and protein (Fr + G) or 13C-labelled fructose, lipids and protein, but without glucose (Fr), or protein and lipids alone (ProLip). After Fr + G, plasma 13C-glucose production accounted for 19.0% ± 1.5% and 13CO2 production for 32.2% ± 1.3% of 13C-fructose carbons. After Fr, 13C-glucose production (26.5% ± 1.4%) and 13CO2 production (36.6% ± 1.9%) were higher (p < 0.05) than with Fr + G. 13C-lactate concentration and very low density lipoprotein VLDL 13C-palmitate concentrations increased to the same extent with Fr + G and Fr, while chylomicron 13C-palmitate tended to increase more with Fr + G. These data indicate that gluconeogenesis, lactic acid production and both intestinal and hepatic de novo lipogenesis contributed to the disposal of fructose carbons ingested together with a mixed meal. Co-ingestion of glucose decreased fructose oxidation and gluconeogenesis and tended to increase 13C-pamitate concentration in gut-derived chylomicrons, but not in hepatic-borne VLDL-triacylglycerol (TG). This trial was approved by clinicaltrial. gov. Identifier is NCT01792089.
Resumo:
High fructose consumption is associated with obesity and characteristics of metabolic syndrome. This includes insulin resistance, dyslipidemia, type II diabetes and hepatic steatosis, the hepatic component of metabolic syndrome. Short term high fructose consumption in healthy humans is considered as a study model to increase intrahepatocellular lipids (IHCL). Protein supplementation added to a short term high fructose diet exerts a protective role on hepatic fat accumulation. Fructose disposal after an acute fructose load is well established. However, fructose disposal is usually studied when a high intake of fructose is ingested. Interaction of fructose with other macronutrients on fructose disposal is not clearly established. We wanted to assess how fructose disposal is modulated with nutritional factors. For the first study, we addressed the question of how would essential amino acid (EAA) supplemented to a high fructose diet have an impact on hepatic fat accumulation? We tried to distinguish which metabolic pathways were responsible for the increase in IHCL induced by high fructose intake and how those pathways would be modulated by EAA. After 6 days of hypercaloric high fructose diet, we observed, as expected an increase in IHCL modulated by an increase in VLDL-triglycerides and an increase in VLDL-13C-palmitate production. When adding a supplementation in EAA, we observed a decrease in IHCL but we could not define which mechanism was responsible for this process. With the second study, we were interested to observe fructose disposal after a test meal that contained lipid, protein and a physiologic dose of fructose co-ingested or not with glucose. When ingested with other macronutrients, hepatic fructose disposal is similar as when ingested as pure fructose. It induced oxidation, gluconeogenesis followed by glycogen synthesis, conversion into lactate and to a minor extent by de novo lipogenesis. When co- ingested with glucose decreased fructose oxidation as well as gluconeogenesis and an increased glycogen synthesis without affecting de novo lipogenesis or lactate. We were also able to observe induction of intestinal de novo lipogenesis with both fructose and fructose co- ingested with glucose. In summary, essential amino acids supplementation blunted increase in hepatic fat content induced by a short term chronic fructose overfeeding. However, EAA failed to improve other cardiovascular risk factors. Under isocaloric condition and in the frame of an acute test meal, physiologic dose of fructose associated with other macronutrients led to the same fructose disposal as when fructose is ingested alone. When co-ingested with glucose, we observed a decrease in fructose oxidation and gluconeogenesis as well as an increased in glycogen storage without affecting other metabolic pathways. - Une consommation élevée en fructose est associée à l'obésité et aux caractéristiques du syndrome métabolique. Ces dernières incluent une résistance à l'insuline, une dyslipidémie, un diabète de type II et la stéatose hépatique, composant hépatique du syndrome métabolique. À court terme une forte consommation en fructose chez l'homme sain est considérée comme un modèle d'étude pour augmenter la teneur en graisse hépatique. Une supplémentation en protéines ajoutée à une alimentation riche en fructose de courte durée a un effet protecteur sur l'accumulation des graisses au niveau du foie. Le métabolisme du fructose après une charge de fructose aiguë est bien établi. Toutefois, ce dernier est généralement étudié quand une consommation élevée de fructose est donnée. L'interaction du fructose avec d'autres macronutriments sur le métabolisme du fructose n'est pas connue. Nous voulions évaluer la modulation du métabolisme du fructose par des facteurs nutritionnels. Pour la première étude, nous avons abordé la question de savoir quel impact aurait une supplémentation en acides aminés essentiels (AEE) associé à une alimentation riche en fructose sur l'accumulation des graisses hépatiques. Nous avons essayé de distinguer les voies métaboliques responsables de l'augmentation des graisses hépatiques induite par l'alimentation riche en fructose et comment ces voies étaient modulées par les AEE. Après 6 jours d'une alimentation hypercalorique riche en fructose, nous avons observé, comme attendu, une augmentation des graisses hépatiques modulée par une augmentation des triglycérides-VLDL et une augmentation de la production de VLDL-13C-palmitate. Lors de la supplémentation en AEE, nous avons observé une diminution des graisses hépatiques mais les mécanismes responsables de ce processus n'ont pas pu être mis en évidence. Avec la seconde étude, nous nous sommes intéressés à observer le métabolisme du fructose après un repas test contenant des lipides, des protéines et une dose physiologique de fructose co-ingéré ou non avec du glucose. Lorsque le fructose était ingéré avec les autres macronutriments, le devenir hépatique du fructose était similaire à celui induit par du fructose pur. Il a induit une oxydation, suivie d'une néoglucogenèses, une synthèse de glycogène, une conversion en lactate et dans une moindre mesure une lipogenèse de novo. Lors de la co-ngestion avec du glucose, nous avons observé une diminution de l'oxydation du fructose et de la néoglucogenèse et une augmentation de la synthèse du glycogène, sans effet sur la lipogenèse de novo ni sur le lactate. Nous avons également pu mettre en évidence que le fructose et le fructose ingéré de façon conjointe avec du glucose ont induit une lipogenèse de novo au niveau de l'intestin. En résumé, la supplémentation en acides aminés essentiels a contrecarré l'augmentation de la teneur en graisse hépatique induite par une suralimentation en fructose sur le court terme. Cependant, la supplémentation en AEE a échoué à améliorer d'autres facteurs de risque cardiovasculaires. Dans la condition isocalorique et dans le cadre d'un repas test aiguë, la dose physiologique de fructose associée à d'autres macronutriments a conduit aux mêmes aboutissants du métabolisme du fructose que lorsque le fructose est ingéré seul. Lors de la co-ngestion avec le glucose, une diminution de l'oxydation du fructose est de la néoglucogenèse est observée en parallèle à une augmentation de la synthèse de glycogène sans affecter les autres voies métaboliques.
Resumo:
Electrical pacing at physiological rate induces myocardial remodeling associated with regional changes in workload, blood flow and oxygen consumption. However, to what extent energy-producing pathways are also modified within the paced heart remains to be investigated. Pacing could particularly affect glycogen metabolism since hypertrophy stimulates glycolysis and increased workload favors glucose over fat oxidation. In order to test this hypothesis, we used the embryonic chick heart model in which ventricular pacing rapidly resulted in thinning of the ventricle wall and thickening of the atrial wall. Hearts of stage 22HH chick embryos were submitted in ovo to asynchronous and intermittent ventricular pacing delivered at physiological rate during 24 h. The resulting alterations of glycogen content were determined in atrium, ventricle and conotruncus of paced and sham-operated hearts. Hemodynamic parameters of the paced and spontaneously beating hearts were derived from computerized image analysis of video recordings. With respect to sham, paced hearts showed a significant decrease in glycogen content (nmoles glucose units/microg protein; mean+/-S.D.) only in atrium (1.48+/-0.40 v 0.84+/-0.34, n=8) and conotruncus (0.75+/-0.28 v 0.42+/-0.23, n=8). Pacing decreased the end diastolic and stroke volumes by 34 and 44%, respectively. Thus, the rapid glycogen depletion in regions remote from the stimulation site appears to be associated with regional changes in workload and remodeling. These findings underscore the importance of the coupling mechanisms between metabolic pathways and myocardial remodeling in the ectopically paced heart.
Resumo:
The aim of this single-blind, placebo-controlled study was to investigate the effects of the new beta-adrenergic compound Ro 40-2148 on resting energy expenditure (REE) at rest and after an oral glucose load in non-diabetic obese women before and after two weeks of treatment. After one week of placebo administration and after an overnight fast and one hour rest, REE and glucose and lipid oxidation rates were measured by indirect calorimetry (hood system) before and for 6 h after a single dose of placebo solution. A 75 g oral glucose tolerance test (OGTT) was performed during this period starting 90 min after the placebo administration. During the following two weeks, using a randomization design, six patients received Ro 40-2148 at a dose of 400 mg diluted in 100 ml water twice a day (i.e. 800 mg per day), while six others continued with the placebo administration. The same tests and measurements were repeated after two weeks, except for the treatment group which received the drug instead of the placebo. The 14-day period of drug administration did not increase REE measured in post-absorptive conditions. Similarly, there was no acute effect on REE of a 400 mg dose of Ro 40-2148. In contrast, glucose-induced thermogenesis was significantly increased after two weeks in the treatment group (means +/- s.e.m.: 3.7 +/- 1.3%, P = 0.047), while no change was observed in the placebo group (-0.8 +/- 0.7%, not significant). Since there was no significant change in the respiratory quotient, the increase in energy expenditure observed in the treatment group was due to stimulation of both lipid and glucose oxidation. The drug induced no variations in heart rate, blood pressure, axillary temperature or in plasma glucose, insulin and free fatty acid levels. In conclusion, this study shows that Ro 40-2148 activates glucose-induced thermogenesis in obese non-diabetic patients.
Resumo:
Non-infarcted myocardium after coronary occlusion undergoes progressive morphological and functional changes. The purpose of this study was to determine whether non-infarcted myocardium exhibits (1) alteration of the substrate pattern of myocardial metabolism and (2) concomitant changes in the expression of regulatory proteins of glucose and fatty acid metabolism. Myocardial infarction was induced in rats by ligation of the left coronary artery. One day and eight weeks after coronary occlusion, glucose and palmitate oxidation were measured. Expression of selected proteins of metabolism were determined one day to 12 weeks after infarction. One day after coronary occlusion no difference of glucose and palmitate oxidation was detectable, whereas after eight weeks, glucose oxidation was increased (+84%, P<0.05) and palmitate oxidation did not change significantly (-19%, P=0.07) in infarct-containing hearts, compared with hearts from sham-operated rats. One day after coronary occlusion, myocardial mRNA expression of the glucose transporter GLUT-1 was increased (+86%, P<0.05) and the expression of GLUT-4 was decreased (-28%, P<0.05) in surviving myocardium of infarct-containing hearts. Protein level of GLUT-1 was increased (+81%, P<0.05) and that of GLUT-4 slightly, but not significantly, decreased (-16%, P=NS). mRNA expressions of heart fatty acid binding protein (H-FABP), and of medium chain acyl-CoA dehydrogenase (MCAD), were decreased by 36% (P<0.05) and 35% (P=0. 07), respectively. Eight weeks after acute infarction, the left ventricle was hypertrophied and, at this time-point, there was no difference in the expression of GLUT-1 and GLUT-4 between infarcted and sham-operated hearts. However, myocardial mRNA and protein content of MCAD were decreased by 30% (P<0.01) and 27% (P<0.05), respectively. In summary, in surviving myocardium, glucose oxidation was increased eight weeks after coronary occlusion. Concomitantly, mRNA and protein expression of MCAD were decreased, compatible with a role of altered expression of regulatory proteins of metabolism in post-infarction modification of myocardial metabolism.
Resumo:
BACKGROUND AND AIMS: Fish oil (FO) supplementation prevents the development of obesity and insulin resistance, and upregulate the expression of UCP3 in skeletal muscle in rodents. This may represent indirect evidence that FO promotes fat oxidation and/or alter energy efficiency. The aim of this study was to evaluate whether such effects can be observed in humans. The metabolic effects of FO were assessed during exercise in order to obtain a direct measurement of energy efficiency. METHODS: Eight healthy male volunteers were studied with and without supplementation with 7.2 g/day FO (including 1.1 g/day eicosopentaenoic acid and 0.7 g/day decosahexaenoic acid) during 14 days. Their VO(2 max) was measured on cycle ergometer. Thereafter, energy metabolism (substrate oxidation, energy expenditure and energy efficiency) was assessed during a 30 min cycling exercise at 50% VO(2 max) performed 2 h 30 after a standardized, high carbohydrate breakfast. RESULTS: VO(2 max) was 38.6+/-2.2 after FO and 38.4+/-2.0 (mL x kg(-1) x min(-1)) in control conditions (NS). Basal plasma glucose, insulin and NEFA concentrations, and energy metabolism were similar with FO and in controls. During exercise, the increases in plasma NEFA concentrations, energy expenditure, glucose and lipid oxidation, and the decreases in glycaemia and insulinemia were not altered by FO intake. Energy efficiency was 22.4+/-0.6% after FO vs 21.8+/-0.7% in controls. In order to ascertain that the absence of effects of FO was not due to consumption of a carbohydrate meal immediately before exercise, 4 of the 8 subjects were re-studied in fasting conditions, FO also failed to alter energy efficiency in this subset of studies. CONCLUSION: FO supplementation did not significantly alter energy metabolism and energy efficiency during exercise in healthy humans.
Resumo:
Background: Nanoparticle (NPs) functionalization has been shown to affect their cellular toxicity. To study this, differently functionalized silver (Ag) and gold (Au) NPs were synthesised, characterised and tested using lung epithelial cell systems. Mehtods: Monodispersed Ag and Au NPs with a size range of 7 to 10 nm were coated with either sodium citrate or chitosan resulting in surface charges from ¿50 mV to +70 mV. NP-induced cytotoxicity and oxidative stress were determined using A549 cells, BEAS-2B cells and primary lung epithelial cells (NHBE cells). TEER measurements and immunofluorescence staining of tight junctions were performed to test the growth characteristics of the cells. Cytotoxicity was measured by means of the CellTiter-Blue ® and the lactate dehydrogenase assay and cellular and cell-free reactive oxygen species (ROS) production was measured using the DCFH-DA assay. Results: Different growth characteristics were shown in the three cell types used. A549 cells grew into a confluent mono-layer, BEAS-2B cells grew into a multilayer and NHBE cells did not form a confluent layer. A549 cells were least susceptible towards NPs, irrespective of the NP functionalization. Cytotoxicity in BEAS-2B cells increased when exposed to high positive charged (+65-75 mV) Au NPs. The greatest cytotoxicity was observed in NHBE cells, where both Ag and Au NPs with a charge above +40 mV induced cytotoxicity. ROS production was most prominent in A549 cells where Au NPs (+65-75 mV) induced the highest amount of ROS. In addition, cell-free ROS measurements showed a significant increase in ROS production with an increase in chitosan coating. Conclusions: Chitosan functionalization of NPs, with resultant high surface charges plays an important role in NP-toxicity. Au NPs, which have been shown to be inert and often non-cytotoxic, can become toxic upon coating with certain charged molecules. Notably, these effects are dependent on the core material of the particle, the cell type used for testing and the growth characteristics of these cell culture model systems.
Resumo:
Water-dispersible gold nanoparticles functionalized with paramagnetic gadolinium have been fully characterized, and the NMRD profiles show very high relaxivities up to 1.5 T. Characterization using TEM images and dynamic light scattering indicate a particle size distribution from 2 to 15 nm. The gold cores of the nanoparticles do not contribute significantly to the overall magnetic moment.
Resumo:
OBJECTIVE: To determine the influence of body weight, fat mass, and fat distribution on resting endogenous glucose production in healthy lean and overweight individuals. DESIGN: measurements were performed in the resting postabsorptive state in individuals receiving an unrestricted diet. SETTING: Institute of Physiology of Lausanne University. MEASUREMENTS: resting post absorptive glucose production, glycogenolysis and gluconeogenesis; resting energy expenditure and net substrate oxidation. RESULTS: Endogenous glucose production was positively correlated with body weight, lean body mass, energy expenditure and carbohydrate oxidation. Gluconeogenesis was positively correlated with net lipid oxidation and energy expenditure, and negatively correlated with net carbohydrate oxidation. No correlation with body fat or fat distribution was observed. CONCLUSIONS: Gluconeogenesis shows a large interindividual variability. Net lipid oxidation and not body fat appears to be a major determinant of gluconeogenesis.
Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain.
Resumo:
In vertebrates, the interconversion of lactate and pyruvate is catalyzed by the enzyme lactate dehydrogenase. Two distinct subunits combine to form the five tetrameric isoenzymes of lactate dehydrogenase. The LDH-5 subunit (muscle type) has higher maximal velocity (Vmax) and is present in glycolytic tissues, favoring the formation of lactate from pyruvate. The LDH-1 subunit (heart type) is inhibited by pyruvate and therefore preferentially drives the reaction toward the production of pyruvate. There is mounting evidence indicating that during activation the brain resorts to the transient glycolytic processing of glucose. Indeed, transient lactate formation during physiological stimulation has been shown by 1H-magnetic resonance spectroscopy. However, since whole-brain arteriovenous studies under basal conditions indicate a virtually complete oxidation of glucose, the vast proportion of the lactate transiently formed during activation is likely to be oxidized. These in vivo data suggest that lactate may be formed in certain cells and oxidized in others. We therefore set out to determine whether the two isoforms of lactate dehydrogenase are localized to selective cell types in the human brain. We report here the production and characterization of two rat antisera, specific for the LDH-5 and LDH-1 subunits of lactate dehydrogenase, respectively. Immunohistochemical, immunodot, and western-blot analyses show that these antisera specifically recognize their homologous antigens. Immunohistochemistry on 10 control cases demonstrated a differential cellular distribution between both subunits in the hippocampus and occipital cortex: neurons are exclusively stained with the anti-LDH1 subunit while astrocytes are stained by both antibodies. These observations support the notion of a regulated lactate flux between astrocytes and neurons.