58 resultados para genotypic characterization
em Université de Lausanne, Switzerland
Resumo:
Purpose:to describe the clinical features in a five generations family segregating autosomal dominant retinitis pigmentosa and to identify the causative gene Patient and Methods:Twenty five individuals of a large five-generation family originating from Western Switzerland were ascertained for phenotypic and genotypic characterization. Ophthalmologic evaluations included color vision testing, Goldman perimetry and digital fundus photography. Some patients had autofluorescence (AF) imaging, ocular coherence tomography (OCT) and ISCEV-standard full-field electroretinography (ERG). Blood samples were collected from 10 affected (4 to 70 years of age) and 15 unaffected members after informed consent. DNA was isolated and exons and intron-exons junctions of known adRP genes were sequenced using a Big Dye sequencing kit 1.1. Results:Age of onset of nightblindness and severity of progression of the disease was variable between members of the family. Some patients had early onset of nightblindess aged 3, others at mid-twenties. Most patients had visual acuity above 0.6 for the first 4 decades. Two older patients still had good vision (0.4) in their seventies. Myopia (range: -2 to -5) was noticed in most affected subjects. Fundus findings showed areas of atrophy along the arcades. The AF imaging showed a large high density ring bilaterally. A T494M change was found in exon 11 of PRPF3 gene. The change segregates with the disease in the family. Conclusion: A mutation in the PRPF3 gene is rare compared with other genes causing ADRP. Although a T494M change has been reported, our family is the first one with a variable expressivity. Mutations in PRPF3 gene can cause a variable phenotype of ADRP unlike the previously described Danish and English families. Our report gives a better understanding as to the phenotype/genotype description of ADRP due to PRPF3 mutation.
Resumo:
PURPOSE: To characterize the clinical, psychophysical, and electrophysiological phenotypes in a five-generation Swiss family with dominantly inherited retinitis pigmentosa caused by a T494M mutation in the Precursor mRNA-Processing factor 3 (PRPF3) gene, and to relate the phenotype to the underlying genetic mutation. METHODS: Eleven affected patients were ascertained for phenotypic and genotypic characterization. Ophthalmologic evaluations included color vision testing, Goldmann perimetry, and digital fundus photography. Some patients had autofluorescence imaging, Optical Coherence Tomography, and ISCEV-standard full-field electroretinography. All affected patients had genetic testing. RESULTS: The age of onset of night blindness and the severity of the progression of the disease varied between members of the family. Some patients reported early onset of night blindness at age three, with subsequent severe deterioration of visual acuity, which was 0.4 in the best eye after their fifties. The second group of patients had a later onset of night blindness, in the mid-twenties, with a milder disease progression and a visual acuity of 0.8 at age 70. Fundus autofluorescence imaging and electrophysiological and visual field abnormalities also showed some degree of varying phenotypes. The autofluorescence imaging showed a large high-density ring bilaterally. Myopia (range: -0.75 to -8) was found in 10/11 affected subjects. Fundus findings showed areas of atrophy along the arcades. A T494M change was found in exon 11 of the PRPF3 gene. The change segregates with the disease in the family. CONCLUSIONS: A mutation in the PRPF3 gene is rare compared to other genes causing autosomal dominant retinitis pigmentosa (ADRP). Although a T494M change has been reported, the family in our study is the first with variable expressivity. Mutations in the PRPF3 gene can cause a variable ADRP phenotype, unlike in the previously described Danish, English, and Japanese families. Our report, based on one of the largest affected pedigree, provides a better understanding as to the phenotype/genotype description of ADRP caused by a PRPF3 mutation.
Resumo:
OBJECTIVE: To identify disease causing mutation in three generations of a Swiss family with pattern dystrophy and high intrafamilial variability of phenotype. To assess the effect of intravitreal ranibizumab injections in the treatment of subfoveal choroidal neovascularization associated with pattern dystrophy in one patient. METHODS: Affected family members were ascertained for phenotypic and genotypic characterization. Ophthalmic evaluations included fundus photography, autofluorescence imaging, optical coherence tomography, and International Society for Clinical Electrophysiology of Vision standard full-field electroretinography. When possible family members had genetic testing. The proband presented with choroidal neovascularization and had intravitreal injections as needed according to visual acuity and optical coherence tomography. RESULTS: Proband had a multifocal type pattern dystrophy, and his choroidal neovascularization regressed after four intravitreal injections. The vision improved from 0.8 to 1.0, and optical coherence tomography showed complete anatomical restoration. A butterfly-shaped pattern was observed in her cousin, whereas a fundus pulverulentus pattern was seen in a second cousin. Aunt had a multifocal atrophic appearance, simulating geographic atrophy in age-related macular degeneration. The Y141C mutation was identified in the peripherin/RDS gene and segregated with disease in the family. CONCLUSION: This is the first report of marked intrafamilial variation of pattern dystrophy because of peripherin/RDS Y141C mutation. Intravitreal ranibizumab injections might be a valuable treatment for associated subfoveal choroidal neovascularization.
Resumo:
BACKGROUND: Since its first detection, characterization of R. felis has been a matter of debate, mostly due to the contamination of an initial R. felis culture by R. typhi. However, the first stable culture of R. felis allowed its precise phenotypic and genotypic characterization, and demonstrated that this species belonged to the spotted fever group rickettsiae. Later, its genome sequence revealed the presence of two forms of the same plasmid, physically confirmed by biological data. In a recent article, Gillespie et al. (PLoS One. 2007;2(3):e266.) used a bioinformatic approach to refute the presence of the second plasmid form, and proposed the creation of a specific phylogenetic group for R. felis. METHODOLOGY/PRINCIPAL FINDINGS: In the present report, we, and five independent international laboratories confirmed unambiguously by PCR the presence of two plasmid forms in R. felis strain URRWXCal(2) (T), but observed that the plasmid content of this species, from none to 2 plasmid forms, may depend on the culture passage history of the studied strain. We also demonstrated that R. felis does not cultivate in Vero cells at 37 degrees C but generates plaques at 30 degrees C. Finally, using a phylogenetic study based on 667 concatenated core genes, we demonstrated the position of R. felis within the spotted fever group. SIGNIFICANCE: We demonstrated that R. felis, which unambiguously belongs to the spotted fever group rickettsiae, may contain up to two plasmid forms but this plasmid content is unstable.
Resumo:
Raman spectroscopy has been applied to characterize fiber dyes and determine the discriminating ability of the method. Black, blue, and red acrylic, cotton, and wool samples were analyzed. Four excitation sources were used to obtain complementary responses in the case of fluorescent samples. Fibers that did not provide informative spectra using a given laser were usually detected using another wavelength. For any colored acrylic, the 633-nm laser did not provide Raman information. The 514-nm laser provided the highest discrimination for blue and black cotton, but half of the blue cottons produced noninformative spectra. The 830-nm laser exhibited the highest discrimination for red cotton. Both visible lasers provided the highest discrimination for black and blue wool, and NIR lasers produced remarkable separation for red and black wool. This study shows that the discriminating ability of Raman spectroscopy depends on the fiber type, color, and the laser wavelength.
Resumo:
Knowledge of the spatial distribution of hydraulic conductivity (K) within an aquifer is critical for reliable predictions of solute transport and the development of effective groundwater management and/or remediation strategies. While core analyses and hydraulic logging can provide highly detailed information, such information is inherently localized around boreholes that tend to be sparsely distributed throughout the aquifer volume. Conversely, larger-scale hydraulic experiments like pumping and tracer tests provide relatively low-resolution estimates of K in the investigated subsurface region. As a result, traditional hydrogeological measurement techniques contain a gap in terms of spatial resolution and coverage, and they are often alone inadequate for characterizing heterogeneous aquifers. Geophysical methods have the potential to bridge this gap. The recent increased interest in the application of geophysical methods to hydrogeological problems is clearly evidenced by the formation and rapid growth of the domain of hydrogeophysics over the past decade (e.g., Rubin and Hubbard, 2005).
Resumo:
Splenic marginal zone lymphoma (SMZL) is a low grade B-cell non-Hodgkin's lymphoma. The molecular pathology of this entity remains poorly understood. To characterise this lymphoma at the molecular level, we performed an integrated analysis of 1) genome wide genetic copy number alterations 2) gene expression profiles and 3) epigenetic DNA methylation profiles.We have previously shown that SMZL is characterised by recurrent alterations of chromosomes 7q, 6q, 3q, 9q and 18; however, gene resolution oligonucleotide array comparative genomic hybridisation did not reveal evidence of cryptic amplification or deletion in these regions. The most frequently lost 7q32 region contains a cluster of miRNAs. qRT-PCR revealed that three of these (miR-182/96/183) show underexpression in SMZL, and miR-182 is somatically mutated in >20% of cases of SMZL, as well as in >20% of cases of follicular lymphoma, and between 5-15% of cases of chronic lymphocytic leukaemia, MALT-lymphoma and hairy cell leukaemia. We conclude that miR-182 is a strong candidate novel tumour suppressor miRNA in lymphoma.The overall gene expression signature of SMZL was found to be strongly distinct fromthose of other lymphomas. Functional analysis of gene expression data revealed SMZL to be characterised by abnormalities in B-cell receptor signalling (especially through the CD19/21-PI3K/AKT pathway) and apoptotic pathways. In addition, genes involved in the response to viral infection appeared upregulated. SMZL shows a unique epigenetic profile, but analysis of differentially methylated genes showed few with methylation related transcriptional deregulation, suggesting that DNA methylation abnormalities are not a critical component of the SMZL malignant phenotype.
Resumo:
Life on earth is subject to the repeated change between day and night periods. All organisms that undergo these alterations have to anticipate consequently the adaptation of their physiology and possess an endogenous periodicity of about 24 hours called circadian rhythm from the Latin circa (about) and diem (day). At the molecular level, virtually all cells of an organism possess a molecular clock which drives rhythmic gene expression and output functions. Besides altered rhythmicity in constant conditions, impaired clock function causes pathophysiological conditions such as diabetes or hypertension. These data unveil a part of the mechanisms underlying the well-described epidemiology of shift work and highlight the function of clock-driven regulatory mechanisms. The post-translational modification of proteins by the ubiquitin polypeptide is a central mechanism to regulate their stability and activity and is capital for clock function. Similarly to the majority of biological processes, it is reversible. Deubiquitylation is carried out by a wide variety of about ninety deubiquitylating enzymes and their function remains poorly understood, especially in vivo. This class of proteolytic enzymes is parted into five families including the Ubiquitin-Specific Proteases (USP), which is the most important with about sixty members. Among them, the Ubiquitin-Specific Protease 2 (Usp2) gene encodes two protein isoforms, USP2-45 and USP2-69. The first is ubiquitously expressed under the control of the circadian clock and displays all features of core clock genes or its closest outputs effectors. Additionally, Usp2-45 was also found to be induced by the mineralocorticoid hormone aldosterone and thought to participate in Na+ reabsorption and blood pressure regulation by Epithelial Na+ Channel ENaC in the kidneys. During my thesis, I aimed to characterize the role of Usp2 in vivo with respect to these two areas, by taking advantage of a total constitutive knockout mouse model. In the first project I aimed to validate the role of USP2-45 in Na+ homeostasis and blood pressure regulation by the kidneys. I found no significant alterations of diurnal Na+ homeostasis and blood pressure in these mice, indicating that Usp2 does not play a substantial role in this process. In urine analyses, we found that our Usp2-KO mice are actually hypercalciuric. In a second project, I aimed to understand the causes of this phenotype. I found that the observed hypercalciuria results essentially from intestinal hyperabsorption. These data reveal a new role for Usp2 as an output effector of the circadian clock in dietary Ca2+ metabolism in the intestine.
Resumo:
Background. Streptococcus gallolyticus is a causative agent of infective endocarditis associated with colon cancer. Genome sequence of strain UCN34 revealed the existence of 3 pilus loci (pil1, pil2, and pil3). Pili are long filamentous structures playing a key role as adhesive organelles in many pathogens. The pil1 locus encodes 2 LPXTG proteins (Gallo2178 and Gallo2179) and 1 sortase C (Gallo2177). Gallo2179 displaying a functional collagen-binding domain was referred to as the adhesin, whereas Gallo2178 was designated as the major pilin. Methods. S. gallolyticus UCN34, Pil1(+) and Pil1(-), expressing various levels of pil1, and recombinant Lactococcus lactis strains, constitutively expressing pil1, were studied. Polyclonal antibodies raised against the putative pilin subunits Gallo2178 and Gallo2179 were used in immunoblotting and immunogold electron microscopy. The role of pil1 was tested in a rat model of endocarditis. Results. We showed that the pil1 locus (gallo2179-78-77) forms an operon differentially expressed among S. gallolyticus strains. Short pilus appendages were identified both on the surface of S. gallolyticus UCN34 and recombinant L. lactis-expressing pil1. We demonstrated that Pil1 pilus is involved in binding to collagen, biofilm formation, and virulence in experimental endocarditis. Conclusions. This study identifies Pil1 as the first virulence factor characterized in S. gallolyticus.
Resumo:
Schwann cells synthesize a large amount of membrane that form a specialized structure called myelin that surrounds axons and facilitate the transmission of electrical signal along neurons in peripheral nervous system (PNS). Previous studies demonstrated that both Schwann cell differentiation and de-differentiation (in the situation of a nerve injury or demyelinating disease) are regulated by cell-intrinsic regulators including several transcription factors. In particular, the de-differentiation of mature Schwann cells is driven by the activation of multiple negative regulators of myelination including Sox2, c-Jun, Notch and Pax3, all usually expressed in immature Schwann cells and suppressed at the onset of myelination. In order to identify new regulators of myelination involved in the development of the PNS, we analyzed the gene-expression profiling data from developing PNS and from three models of demyelinating neuropathies. This analysis led to the identification of Sox4, a member of the Sox family of transcription factors, as a potential candidate. To characterize the molecular function of Sox4 in PNS, we generated two transgenic lines of mice, which overexpress Sox4 specifically in Schwann cells. Detailed analysis of these mice showed that the overexpression of Sox4 in Schwann cells causes a delay in progression of myelination between post-natal day 2 (P2) and P5. Our in vitro analysis suggested that Sox4 cDNA can be overexpressed while the protein translation is tightly regulated. Interestingly, we observed that Sox4 protein is stabilized in nerves of the CMT4C mouse, a model of the human neuropathy. We therefore crossed Sox4 transgenic mice with CMT4C mice and we observed that Sox4 overexpression exacerbated the neuropathy phenotype in these mice. While recognized as being crucial for the normal function of both neurons and myelinating glial cells, the processes that regulate the beginning of myelination and the nature of the neuro-glial cross-talk remains mostly unknown. In order to gain insight into the molecular pathways involved in the interactions between neurons and associated glial cells, we developed a neuron-glia co-culture system based on microfluidic chambers and successfully induced myelination in this system by ascorbic acid. Importantly, we observed that in addition to acting on Schwann cells, ascorbic acid also modulate neuronal/axonal NRG1/ErbB2-B3 signalling. The experimental setting used in our study thus allowed us to discover a novel phenomena of propagation for myelination in vitro. The further characterization of this event brought us to identify other compounds able to induce myelination: ADAMs secretases inhibitor GM6001 and cyclic-AMP. The results generated during my thesis project are therefore not only important for the advancement of our understanding of how the PNS works, but may also potentially help to develop new therapies aiming at improvement of PNS myelination under disease conditions. - Les cellules de Schwann synthétisent une grande quantité de membrane formant une structure spécialisée appelée myéline qui entoure les axones et facilite la transmission du signal électrique le long des neurones du système nerveux périphérique (SNP). Des études antérieures ont démontré que la différenciation et la dédifférenciation des cellules de Schwann (dans la situation d'une lésion nerveuse ou d'une maladie démyélinisante) sont régulées par des régulateurs cellulaires intrinsèques, incluant plusieurs facteurs de transcription. En particulier, la dédifférenciation des cellules de Schwann matures est contrôlée par l'activation de plusieurs régulateurs négatifs de la myélinisation dont Sox2, c-Jun, Notch et Pax3, tous habituellement exprimés dans des cellules de Schwann immatures et supprimés au début de la myélinisation. Afin d'identifier de nouveaux régulateurs de myélinisation impliqués dans le développement du SNP, nous avons analysé le profil d'expression génique durant le développement du SNP ainsi que dans trois modèles de neuropathies démyélinisantes. Cette analyse a mené à l'identification de Sox4, un membre de la famille des facteurs de transcription Sox, comme étant un candidat potentiel. Dans le but de caractériser la fonction moléculaire de Sox4 dans le SNP, nous avons généré deux lignées transgéniques de souris qui surexpriment Sox4 spécifiquement dans les cellules de Schwann. L'analyse détaillée de ces souris a montré que la surexpression de Sox4 dans les cellules de Schwann provoque un retard dans la progression de la myélinisation entre le jour postnatal 2 (P2) et P5. Notre analyse in vitro a suggéré que l'ADNc de Sox4 peut être surexprimé alors que la traduction des protéines est quand à elle étroitement régulée. De façon intéressante, nous avons observé que la protéine Sox4 est stabilisée dans les nerfs des souris CMT4C, un modèle de neuropathie humaine. Nous avons donc croisé les souris transgéniques Sox4 avec des souris CMT4C et avons observé que la surexpression de Sox4 exacerbe le phénotype de neuropathie chez ces souris. Bien que reconnus comme étant cruciaux pour le fonctionnement normal des neurones et des cellules gliales myélinisantes, les processus qui régulent le début de la myélinisation ainsi que la nature des interactions neurone-glie restent largement méconnus. Afin de mieux comprendre les mécanismes moléculaires impliqués dans les interactions entre les neurones et les cellules gliales leur étant associés, nous avons développé un système de co-culture neurone-glie basé sur des chambres microfluidiques et y avons induit avec succès la myélinisation avec de l'acide ascorbique. Étonnamment, nous avons remarqué que, en plus d'agir sur les cellules de Schwann, l'acide ascorbique module également la voie de signalisation neuronale/axonale NRG1/ErbB2-B3. Le protocole expérimental utilisé dans notre étude a ainsi permis de découvrir un nouveau phénomène de propagation de la myélinisation in vitro. La caractérisation plus poussée de ce phénomène nous a menés à identifier d'autres composés capables d'induire la myélinisation: L'inhibiteur de sécrétases ADAMs GM6001 et l'AMP cyclique. Les résultats obtenus au cours de mon projet de thèse ne sont donc pas seulement importants pour l'avancement de notre compréhension sur la façon dont le SNP fonctionne, mais peuvent aussi potentiellement aider à développer de nouvelles thérapies visant à l'amélioration de la myélinisation du SNP dans des conditions pathologiques.
Resumo:
Depuis plus de 10 ans les modèles numériques d'altitude (MNA) produits par technologie de « light detection and ranging » (« LIDAR ») ont fourni de nouveaux outils très utiles pour des études géomorphologiques, particulièrement dans le cas des glissements de terrain. Le balayage laser terrestre (« TLS ») permet une utilisation très souple. Le TLS peut être employé pour la surveillance ou dans des situations d'urgence qui nécessitent une acquisition rapide d'un MNA afin d'évaluer l'aléa. Au travers de trois exemples, nous démontrons l'utilité du TLS pour la quantification de volumes de glissements de terrain, la création de profils et l'analyse de séries temporelles. Ces études de cas sont des glissements de terrain situés dans les argiles sensibles de l'est du Canada (Québec, Canada) ou de petits glissements rotationnels dans les berges d'une rivière (Suisse).