71 resultados para functionalized terbium nanoparticles

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superparamagnetic iron oxide nanoparticles (SPIONs) are in clinical use for disease detection by MRI. A major advancement would be to link therapeutic drugs to SPIONs in order to achieve targeted drug delivery combined with detection. In the present work, we studied the possibility of developing a versatile synthesis protocol to hierarchically construct drug-functionalized-SPIONs as potential anti-cancer agents. Our model biocompatible SPIONs consisted of an iron oxide core (9-10 nm diameter) coated with polyvinylalcohols (PVA/aminoPVA), which can be internalized by cancer cells, depending on the positive charges at their surface. To develop drug-functionalized-aminoPVA-SPIONs as vectors for drug delivery, we first designed and synthesized bifunctional linkers of varied length and chemical composition to which the anti-cancer drugs 5-fluorouridine or doxorubicin were attached as biologically labile esters or peptides, respectively. These functionalized linkers were in turn coupled to aminoPVA by amide linkages before preparing the drug-functionalized-SPIONs that were characterized and evaluated as anti-cancer agents using human melanoma cells in culture. The 5-fluorouridine-SPIONs with an optimized ester linker were taken up by cells and proved to be efficient anti-tumor agents. While the doxorubicin-SPIONs linked with a Gly-Phe-Leu-Gly tetrapeptide were cleaved by lysosomal enzymes, they exhibited poor uptake by human melanoma cells in culture.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Water-dispersible gold nanoparticles functionalized with paramagnetic gadolinium have been fully characterized, and the NMRD profiles show very high relaxivities up to 1.5 T. Characterization using TEM images and dynamic light scattering indicate a particle size distribution from 2 to 15 nm. The gold cores of the nanoparticles do not contribute significantly to the overall magnetic moment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this present thesis Superparamagnetic Iron Oxide Nanoparticles (SPIONs) with 9 nm in diameter were selected as nanocarriers in order to study their potential application as drug delivery systems. Therefore the aim of the study was to demonstrate the proof of concept by establishing an efficient system of drug delivery, which would be a valuable tool in biomedical applications, such as the treatement of cancer, by reducing the side effects due to administration of a high concentration of therapeutic agents. As demonstrated in a previous study, the uptake of SPIONs by tumoral human cells was enhanced by the presence of amino groups on their surface. The stabilization of SPIONs were then performed and optimized by the coating of poly(vinylalcohol) and poly(vinylalcohol/vinylamine). Such nanoparticles were known as aminoPVA-SPIONs. The toxicity and the inflammatory reaction of aminoPVA-SPIONs were evaluated in order to establish their potentiel use in the human body. The results demonstrated that the human cells were able to invaginate aminoPVA-SPIONS without revealing any toxicity and inflammatory reaction. The analysis by transmission electron microscopy (TEM), scanning electron microscopy (SEM), cryo-TEM, confocal microscopy and histological staining (i.e. Prussian Blue) showed that the iron oxide core of SPIONs were located in the cytoplasm of cells and concentrated in vesicles. The evaluation of the mechanism of uptake of aminoPVA-SPIONs revealed that their uptake by monolayer cell culture was performed via an active mechanism, which was achieved by a clathrin-mediated endocytosis. Consequently, it was suggested that aminoPVA-SPIONs were good candidates as nanocarriers in drug delivery systems, which were able to reach the cytoplasm of cells. Their incubation with three-dimensional models mimicing tissues, such as differentiated rat brain cell-derived aggregates and spheroids, revealed that aminoPVA-SPIONs were able to invade into deep cell layers according to the stage of growth of these models. In the view of these promising results, drug-SPIONs were prepared by the functionalization of aminoPVA-SPIONs via a biological labile chemical bond by one of these three antineoplastic agents, which are widely used in clinical practice: 5-fluorourdine (Fur) (an antimetabolite), or camptothecin (CPT) (a topoisomerase inhibitor) or doxorubicin (DOX) (an anthracycline which interfere with DNA). The results shown that drug-SPIONs were internalized by human melanoma cells, as it was expected due the previous results with aminoPVA-SPIONs, and in addition they were active as anticancer agents, suggesting the efficient release of the drug from the drug-SPIONs. The results with CPT-SPIONs were the most promising, whereas DOX- SPIONs did not demonstrate a prononced activity of DOX. In conclusion, the results demonstrated that functionalized iron oxide nanoparticles are a promising tool in order to deliver therapeutic agents. - Dans le cadre de ce travail de thèse, les nanoparticules superparamagnétiques d'oxyde de fer (SPIONs) ayant un diamètre de 9 nm ont été choisies, afin d'étudier leur éventuelle utilisation dans un système de délivrance d'agents thérapeutiques. Ainsi le but de la thèse est de démontrer la faisabilité de fabriquer un système efficace de délivrance d'agents thérapeutiques, qui serait un outil intéressant dans le cadre d'une utilisation biomédicale, par exemple lors du traitement du cancer, qui pourrait réduire les effets secondaires provoqués par le dosage trop élevé de médicaments. Comme il a été démontré dans une précédente étude, l'invagination des SPIONs par des cellules humaines cancéreuses est améliorée par la présence de groupes fonctionnels amino à leur surface. La stabilisation des SPIONs est ainsi effectuée et optimisée par l'enrobage de poly(vinylalcool) et de (poly(vinylalcool/vinylamine), qui sont connues sous le nom de aminoPVA-SPIONs. La toxicité et la réaction inflammatoire des aminoPVA-SPIONs ont été évaluées dans le but de déterminer leur potentielle utilisation dans le corps humain. Les résultats démontrèrent que les cellules humaines sont capables d'invaginer les aminoPVAS-SPIONs sans induire une réaction toxique ou inflammatoire. L'analyse par la microscopie électronique en transmission électronique (TEM), la microscopie électronique à balayage (SEM), le cryo-microscopie électronique (SEM), la microscopie confocale et la coloration histologique (par ex, le bleu de Prusse) a montré que l'oxyde de fer des SPIONs est localisé dans le cytoplasme des cellules et est concentré dans des vesicules. L'évaluation du méchanisme d'invagination des aminoPVA-SPIONs ont révélé que leur invagination par des monocultures de cellules est effectué par un méchanisme actif, contrôlé par une endocytose induite par les clathrins. Par conséquent, les aminoPVA-SPIONs sont de bons candidats en tant que transporteurs (nanocamers) dans un système de délivrance d'agents thérapeuthique, capable d'atteindre le cytoplasme des cellules. Leur incubation avec des modèles tridimenstionnels imitant les tissues, tels que les aggrégats de cellules de cerveau différenciées et les sphéroïdes, a montré que les aminoPVA-SPIONs sont capable de pénétrer dans les couches profondes des modèles, selon l'état d'avancement de leur croissance. En vue de ces résultats prometteurs, les drug-SPIONs ont été préparés en fonctionalisant les aminoPVA-SPIONs par le biai d'une liaison chimique labile par un des trois agents thérapeutiques, déjà utilisé en pratique : 5-fluorourdine (Fur) (un antimétabolite), or camptothecin (CPT) (un inhibiteur de la topoisomerase) or doxorubicin (DOX) (un anthracycline qui interfère avec le DNA). Les résultats ont montré que les drug-SPIONs sont capable d'être internalisés par les mélanomes, comme il a été attendu d'après les résultats obtenus précédemment avec les aminoPVA-SPIONs, et de plus, les drug-SPIONs sont actifs, ce qui suggère un relargage efficace de l'agent thérapeutique du drug-SPIONs. Les résultats obtenus avec les CPT-SPIONs sont les plus prometteurs, tandis que ceux avec les DOX-SPIONs, ce n'est pas le cas, dont l'activité thérapeutique de DOX n'a pas été aussi efficace. En conclusion, les résultats ont pu démontrer que les nanoparticules d'oxyde de fer fonctionnalisées sont un outil prometteur dans la délivrance d'agents thérapeutiques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Drug-nanoparticle conjugates: The anticancer drug camptothecin (CPT) was covalently linked at the surface of ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) via a linker, allowing drug release by cellular esterases. Nanoparticles were hierarchically built to achieve magnetically-enhanced drug delivery to human cancer cells and antiproliferative activity.The linking of therapeutic drugs to ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) allowing intracellular release of the active drug via cell-specific mechanisms would achieve tumor-selective magnetically-enhanced drug delivery. To validate this concept, we covalently attached the anticancer drug camptothecin (CPT) to biocompatible USPIOs (iron oxide core, 9-10 nm; hydrodynamic diameter, 52 nm) coated with polyvinylalcohol/polyvinylamine (PVA/aminoPVA). A bifunctional, end-differentiated dicarboxylic acid linker allowed the attachment of CPT to the aminoPVA as a biologically labile ester substrate for cellular esterases at one end, and as an amide at the other end. These CPT-USPIO conjugates exhibited antiproliferative activity in vitro against human melanoma cells. The intracellular localization of CPT-USPIOs was confirmed by transmission electron microscopy (iron oxide core), suggesting localization in lipid vesicles, and by fluorescence microscopy (CPT). An external static magnetic field applied during exposure increased melanoma cell uptake of the CPT-USPIOs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor-associated macrophages (TAMs) invade the tumor stroma in many cancers, yet their role is incompletely understood. To visualize and better understand these critical cells in tumor progression, we screened a portfolio of rationally selected, injectable agents to image endogenous TAMs ubiquitously in three different cancer models (colon carcinoma, lung adenocarcinoma, and soft tissue sarcoma). AMTA680, a functionally derivatized magneto-fluorescent nanoparticle, labeled a subset of myeloid cells with an "M2" macrophage phenotype, whereas other neighboring cells, including tumor cells and a variety of other leukocytes, remained unlabeled. We further show that AMTA680-labeled endogenous TAMs are not altered and can be tracked noninvasively at different resolutions and using various imaging modalities, e.g., fluorescence molecular tomography, magnetic resonance imaging, and multiphoton and confocal intravital microscopy. Quantitative assessment of TAM distribution and activity in vivo identified that these cells cluster in delimited foci within tumors, show relatively low motility, and extend cytoplasmic protrusions for prolonged physical interactions with neighboring tumor cells. Noninvasive imaging can also be used to monitor TAM-depleting regimen quantitatively. Thus, AMTA680 or related cell-targeting agents represent appropriate injectable vehicles for in vivo analysis of the tumor microenvironment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Nanoparticle (NPs) functionalization has been shown to affect their cellular toxicity. To study this, differently functionalized silver (Ag) and gold (Au) NPs were synthesised, characterised and tested using lung epithelial cell systems. Mehtods: Monodispersed Ag and Au NPs with a size range of 7 to 10 nm were coated with either sodium citrate or chitosan resulting in surface charges from ¿50 mV to +70 mV. NP-induced cytotoxicity and oxidative stress were determined using A549 cells, BEAS-2B cells and primary lung epithelial cells (NHBE cells). TEER measurements and immunofluorescence staining of tight junctions were performed to test the growth characteristics of the cells. Cytotoxicity was measured by means of the CellTiter-Blue ® and the lactate dehydrogenase assay and cellular and cell-free reactive oxygen species (ROS) production was measured using the DCFH-DA assay. Results: Different growth characteristics were shown in the three cell types used. A549 cells grew into a confluent mono-layer, BEAS-2B cells grew into a multilayer and NHBE cells did not form a confluent layer. A549 cells were least susceptible towards NPs, irrespective of the NP functionalization. Cytotoxicity in BEAS-2B cells increased when exposed to high positive charged (+65-75 mV) Au NPs. The greatest cytotoxicity was observed in NHBE cells, where both Ag and Au NPs with a charge above +40 mV induced cytotoxicity. ROS production was most prominent in A549 cells where Au NPs (+65-75 mV) induced the highest amount of ROS. In addition, cell-free ROS measurements showed a significant increase in ROS production with an increase in chitosan coating. Conclusions: Chitosan functionalization of NPs, with resultant high surface charges plays an important role in NP-toxicity. Au NPs, which have been shown to be inert and often non-cytotoxic, can become toxic upon coating with certain charged molecules. Notably, these effects are dependent on the core material of the particle, the cell type used for testing and the growth characteristics of these cell culture model systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles (NPs) are being used or explored for the development of biomedical applications in diagnosis and therapy, including imaging and drug delivery. Therefore, reliable tools are needed to study the behavior of NPs in biological environment, in particular the transport of NPs across biological barriers, including the blood-brain tumor barrier (BBTB), a challenging question. Previous studies have addressed the translocation of NPs of various compositions across cell layers, mostly using only one type of cells. Using a coculture model of the human BBTB, consisting in human cerebral endothelial cells preloaded with ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) and unloaded human glioblastoma cells grown on each side of newly developed ultrathin permeable silicon nitride supports as a model of the human BBTB, we demonstrate for the first time the transfer of USPIO NPs from human brain-derived endothelial cells to glioblastoma cells. The reduced thickness of the permeable mechanical support compares better than commercially available polymeric supports to the thickness of the basement membrane of the cerebral vascular system. These results are the first report supporting the possibility that USPIO NPs could be directly transferred from endothelial cells to glioblastoma cells across a BBTB. Thus, the use of such ultrathin porous supports provides a new in vitro approach to study the delivery of nanotherapeutics to brain cancers. Our results also suggest a novel possibility for nanoparticles to deliver therapeutics to the brain using endothelial to neural cells transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles, a new tool to deter crime? The detection of fingermarks at a crime scene or on evidence related with a criminal affair constitutes one of the main tasks of the investigators. Fingerprints, due to their uniqueness and invariability in time, remain a key element of an identification process (being for suspects or victims). The main difficulty resides in the fact that, most of the time, fingermarks are not visible through naked eye due to their chemical composition and the small amount of material that is left on the scene. There are said to be latent and their detection requires the application of specific techniques (optical or chemical). If numerous efficient techniques currently exist, there is a continuing quest for developing new techniques or reagents with an enhanced sensitivity towards secretions and with an increased efficiency. This article gives an outline about some currently performed researches based on the use of functionalized nanoparticles to detect latent fingermarks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterisation of nanoparticles (NP) based on size distribution, surface area, reactivity, and aggregation status of nanoparticles (NP) are of prime importance because they are usually closely related to toxicity. To date, most of the toxicity studies are quite time and money consuming. In the present study we report the oxidative properties of a panel of various NP (four Carbonaceous, nine Metal oxides, and one Metal as showed in Table 1) assessed with an acellular reactivity test measuring dithiothreitol (DTT) consumption (Sauvain et al. 2008). Such a test allows determining the ability of NP to catalyse the transfer of electrons from DTT to oxygen. DTT is used as a reductant species. NP were diluted and sonicated in Tween 80® to a final concentration of 50 g/mL. Printex 90 was diluted 5 times before doing the DTT assay because of its expected higher activity. Suspensions were characterised for NP size distribution by Nanoparticle Tracking Analysis (Nanosight©). Fresh solutions were incubated with DTT (100 μM). Aliquots were taken every 5 min and the remaining DTT was determined by reacting it with DTNB. The reaction rate was determined for NP suspensions and blank in parallel. The mean Brownian size distribution of NP agglomerates in suspension is presented in Table 1. D values correspond to 10th, and 50th percentiles of the particle diameters. All the NP agglomerated in Tween 80 with a D50 size corresponding to at least twice their primary size, except for Al2O3 (300 nm). The DTT test showed Printex 90 sample to be the most reactive one, followed by Diesel EPA and Nanotubes. Most of the metallic NP was nonresponding toward this test, except for NiO and Ag which reacted positively and ZnO which presented the most negative reactivity (see Figure 1). This last observation suggests that electron transfer between DTT and oxygen is hindered in presence of ZnO compared with the blank. Such "stabilization" could be attributable to ZnO dissolution and complexation between Zn2+ ions and DTT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding how nanoparticles may affect immune responses is an essential prerequisite to developing novel clinical applications. To investigate nanoparticle-dependent outcomes on immune responses, dendritic cells (DCs) were treated with model biomedical poly(vinylalcohol)-coated super-paramagnetic iron oxide nanoparticles (PVA-SPIONs). PVA-SPIONs uptake by human monocyte-derived DCs (MDDCs) was analyzed by flow cytometry (FACS) and advanced imaging techniques. Viability, activation, function, and stimulatory capacity of MDDCs were assessed by FACS and an in vitro CD4(+) T cell assay. PVA-SPION uptake was dose-dependent, decreased by lipopolysaccharide (LPS)-induced MDDC maturation at higher particle concentrations, and was inhibited by cytochalasin D pre-treatment. PVA-SPIONs did not alter surface marker expression (CD80, CD83, CD86, myeloid/plasmacytoid DC markers) or antigen-uptake, but decreased the capacity of MDDCs to process antigen, stimulate CD4(+) T cells, and induce cytokines. The decreased antigen processing and CD4(+) T cell stimulation capability of MDDCs following PVA-SPION treatment suggests that MDDCs may revert to a more functionally immature state following particle exposure.