50 resultados para freshwater parasite
em Université de Lausanne, Switzerland
Resumo:
Abstract: To understand the processes of evolution, biologists are interested in the ability of a population to respond to natural or artificial selection. The amount of genetic variation is often viewed as the main factor allowing a species to answer to selection. Many theories have thus focused on the maintenance of genetic variability. Ecologists and population geneticists have long-suspected that the structure of the environment is connected to the maintenance of diversity. Theorists have shown that diversity can be permanently and stably maintained in temporal and spatial varying environment in certain conditions. Moreover, varying environments have been also theoretically demonstrated to cause the evolution of divergent life history strategies in the different niches constituting the environment. Although there is a huge number of theoretical studies selection and on life history evolution in heterogeneous environments, there is a clear lack of empirical studies. The purpose of this thesis was to. empirically study the evolutionary consequences of a heterogeneous environment in a freshwater snail Galba truncatula. Indeed, G. truncatula lives in two habitat types according the water availability. First, it can be found in streams or ponds which never completely dry out: a permanent habitat. Second, G. truncatula can be found in pools that freeze during winter and dry during summer: a temporary habitat. Using a common garden approach, we empirically demonstrated local adaptation of G. truncatula to temporary and permanent habitats. We used at first a comparison of molecular (FST) vs. quantitative (QST) genetic differentiation between temporary and permanent habitats. To confirm the pattern QST> FST between habitats suggesting local adaptation, we then tested the desiccation resistance of individuals from temporary and permanent habitats. This study confirmed that drought resistance seemed to be the main factor selected between habitats, and life history traits linked to the desiccation resistance were thus found divergent between habitats. However, despite this evidence of selection acting on mean values of traits between habitats, drift was suggested to be the main factor responsible of variation in variances-covariances between populations. At last, we found life history traits variation of individuals in a heterogeneous environment varying in parasite prevalence. This thesis empirically demonstrated the importance of heterogeneous environments in local adaptation and life history evolution and suggested that more experimental studies are needed to investigate this topic. Résumé: Les biologistes se sont depuis toujours intéressés en l'aptitude d'une population à répondre à la sélection naturelle. Cette réponse dépend de la quantité de variabilité génétique présente dans cette population. Plus particulièrement, les théoriciens se sont penchés sur la question du maintient de la variabilité génétique au sein d'environnements hétérogènes. Ils ont alors démontré que, sous certaines conditions, la diversité génétique peut se maintenir de manière stable et permanente dans des environnements variant au niveau spatial et temporel. De plus, ces environments variables ont été démontrés comme responsable de divergence de traits d'histoire de vie au sein des différentes niches constituant l'environnement. Cependant, malgré ce nombre important d'études théoriques portant sur la sélection et l'évolution des traits d'histoire de vie en environnement hétérogène, les études empiriques sont plus rares. Le but de cette thèse était donc d'étudier les conséquences évolutives d'un environnement hétérogène chez un esgarcot d'eau douce Galba truncatula. En effet, G. truncatula est trouvé dans deux types d'habitats qui diffèrent par leur niveau d'eau. Le premier, l'habitat temporaire, est constitué de flaques d'eau qui peuvent s'assécher pendant l'été et geler pendant l'hiver. Le second, l'habitat permanent, correspond à des marres ou à des ruisseaux qui ont un niveau d'eau constant durant toute l'année. Utilisant une approche expérimentale de type "jardin commun", nous avons démontré l'adaptation locale des individus à leur type d'habitat, permanent ou temporaire. Nous avons utilisé l'approche Fsr/QsT qui compare la différentiation génétique moléculaire avec la différentiation génétique quantitative entre les 2 habitats. Le phénomène d'adapation locale démontré par QsT > FsT, a été testé experimentalement en mesurant la résistance à la dessiccation d'individus d'habitat temporaire et permanent. Cette étude confirma que la résistance à la sécheresse a été sélectionné entre habitats et que les traits responsables de cette resistance sont différents entre habitats. Cependant si la sélection agit sur la valeur moyenne des traits entre habitats, la dérive génétique semble être le responsable majeur de la différence de variances-covariances entre populations. Pour finir, une variation de traits d'histoire de vie a été trouvée au sein d'un environnement hétérogène constitué de populations variants au niveau de leur taux de parasitisme. Pour conclure, cette thèse a donc démontré l'importance d'un environnement hétérogène sur l'adaptation locale et l'évolution des traits d'histoire de vie et suggère que plus d'études empiriques sur le sujet sont nécessaires.
Resumo:
Unraveling the effect of selection vs. drift on the evolution of quantitative traits is commonly achieved by one of two methods. Either one contrasts population differentiation estimates for genetic markers and quantitative traits (the Q(st)-F(st) contrast) or multivariate methods are used to study the covariance between sets of traits. In particular, many studies have focused on the genetic variance-covariance matrix (the G matrix). However, both drift and selection can cause changes in G. To understand their joint effects, we recently combined the two methods into a single test (accompanying article by Martin et al.), which we apply here to a network of 16 natural populations of the freshwater snail Galba truncatula. Using this new neutrality test, extended to hierarchical population structures, we studied the multivariate equivalent of the Q(st)-F(st) contrast for several life-history traits of G. truncatula. We found strong evidence of selection acting on multivariate phenotypes. Selection was homogeneous among populations within each habitat and heterogeneous between habitats. We found that the G matrices were relatively stable within each habitat, with proportionality between the among-populations (D) and the within-populations (G) covariance matrices. The effect of habitat heterogeneity is to break this proportionality because of selection for habitat-dependent optima. Individual-based simulations mimicking our empirical system confirmed that these patterns are expected under the selective regime inferred. We show that homogenizing selection can mimic some effect of drift on the G matrix (G and D almost proportional), but that incorporating information from molecular markers (multivariate Q(st)-F(st)) allows disentangling the two effects.
Resumo:
BackgroundThe great diversity of bat haemosporidians is being uncovered with the help of molecular tools. Yet most of these studies provide only snapshots in time of the parasites discovered. Polychromophilus murinus, a malaria-like blood parasite, specialised on temperate-zone bats is a species that is being `rediscovered¿. This study describes the infection dynamics over time and between host sex and age classes.MethodsFor three years we followed the members of three breeding colonies of Myotis daubentonii in Western Switzerland and screened them for the prevalence and parasitemia of P. murinus using both molecular tools and traditional microscopy. In order to identify more susceptible classes of hosts, we measured, sexed and aged all individuals. During one year, we additionally measured body temperature and haematocrit values.ResultsJuvenile bats demonstrated much higher parasitemia than any other age class sampled, suggesting that first exposure to the parasite is very early in life during which infections are also at their most intense. Moreover, in subadults there was a clear negative correlation between body condition and intensity of infection, whereas a weak positive correlation was observed in adults. Neither body temperature, nor haematocrit, two proxies used for pathology, could be linked to intensities of infection.ConclusionIf both weaker condition and younger age are associated with higher infection intensity, then the highest selection pressure exerted by P. murinus should be at the juvenile stage. Confusion over the identities and nomenclature of malarial-like parasites requires that molecular barcodes are coupled to accurate morphological descriptions.
Resumo:
The hypothesis that extravagant ornaments signal parasite resistance has received support in several species for ornamented males but more rarely for ornamented females. However, recent theories have proposed that females should often be under sexual selection, and therefore females may signal the heritable capacity to resist parasites. We investigated this hypothesis in the socially monogamous barn owl, Tyto alba, in which females exhibit on average more and larger black spots on the plumage than males, and in which males were suggested to choose a mate with respect to female plumage spottiness. We hypothesized that the proportion of the plumage surface covered by black spots signals parasite resistance. In line with this hypothesis, we found that the ectoparasitic fly, Carnus hemapterus, was less abundant on young raised by more heavily spotted females and those flies were less fecund. In an experiment, where entire clutches were cross-fostered between nests, we found that the fecundity of the flies collected on nestlings was negatively correlated with the genetic mother's plumage spottiness. These results suggest that the ability to resist parasites covaries with the extent of female plumage spottiness. Among females collected dead along roads, those with a lot of black spots had a small bursa of Fabricius. Given that parasites bigger the development of this immune organ, this observation further suggests that more spotted females are usually less parasitized. The same analyses performed on male plumage spottiness all provided non-significant results. To our knowledge, this study is the first one showing that a heritable secondary sexual characteristics displayed by females reflects parasite resistance.
Resumo:
Non-indigenous species can have strong impacts on biodiversity by affecting trophic relationships in their new environments. The piscivorous dice snake (Natrix tessellata) has been introduced to Geneva Lake, western Switzerland, where the endangered viperine snake (Natrix maura) is native. Local, dramatic declines in the viperine snake population might be associated with the appearance of the dice snake through dietary overlap between these 2 species, which mainly feed on bullhead (Cottus gobio). In response to this decline, a control program for dice snake was implemented in 2007 to reduce numbers of this introduced snake. In 2010, a new species of fish, the freshwater blenny (Salaria fluviatilis), which shares the same habitat as the bullhead, was introduced into Lake Geneva and has since reached high densities. We determined the impact of freshwater blenny on diet composition and body condition of dice snakes. In addition, we tested for effects of the control program on the body condition of dice snakes and viperine snakes. We collected 294 dice snakes between 2007 and 2013. Based on morphology and a genetic marker (cytochrome b gene), we determined the ®sh species contained in these snakes' stomachs. We found a drastic switch in dice snake diet following the arrival of freshwater blenny, as consumption of bullhead declined by 68% and was replaced by the blenny. In addition, the body condition of dice snakes increased significantly after the arrival of freshwater blenny. The body condition of both snake species was positively correlated with the number of dice snakes removed from the study area. This finding has important implications concerning the conservation of the endangered viperine snake, and suggests that the control program of dice snakes should be continued.
Resumo:
BACKGROUND: The population genetic structure of a parasite, and consequently its ability to adapt to a given host, is strongly linked to its own life history as well as the life history of its host. While the effects of parasite life history on their population genetic structure have received some attention, the effect of host social system has remained largely unstudied. In this study, we investigated the population genetic structure of two closely related parasitic mite species (Spinturnix myoti and Spinturnix bechsteini) with very similar life histories. Their respective hosts, the greater mouse-eared bat (Myotis myotis) and the Bechstein's bat (Myotis bechsteinii) have social systems that differ in several substantial features, such as group size, mating system and dispersal patterns. RESULTS: We found that the two mite species have strongly differing population genetic structures. In S. myoti we found high levels of genetic diversity and very little pairwise differentiation, whereas in S. bechsteini we observed much less diversity, strongly differentiated populations and strong temporal turnover. These differences are likely to be the result of the differences in genetic drift and dispersal opportunities afforded to the two parasites by the different social systems of their hosts. CONCLUSIONS: Our results suggest that host social system can strongly influence parasite population structure. As a result, the evolutionary potential of these two parasites with very similar life histories also differs, thereby affecting the risk and evolutionary pressure exerted by each parasite on its host.
Resumo:
1. The mechanisms underlying host choice strategies by parasites remain poorly understood. We address two main questions: (i) do parasites prefer vulnerable or well-fed hosts, and (ii) to what extent is a parasite species specialized towards a given host species? 2. To answer these questions, we investigated, both in the field and in the lab, a host-parasite system comprising one ectoparasitic mite (Spinturnix myoti) and its major hosts, two sibling species of bats (Myotis myotis and M blythii), which coexist intimately in colonial nursery roosts. We exploited the close physical associations between host species in colonial roosts as well as naturally occurring annual variation in food abundance to investigate the relationships between parasite intensities and (i) host species and (ii) individual nutritional status. 3. Although horizontal transmission of parasites was facilitated by the intimate aggregation of bats within their colonial clusters, we found significant interspecific differences in degree of infestation throughout the 6 years of the study, with M. myotis always more heavily parasitized than M. blythii. This pattern was replicated in a laboratory experiment in which any species-specific resistance induced by exploitation of different trophic niches in nature was removed. 4. Within both host species, S. myoti showed a clear preference for individuals with higher nutritional status. In years with high resource abundance, both bat hosts harboured more parasites than in low-resource years, although the relative difference in parasite burden across species was maintained. This pattern of host choice was also replicated in the laboratory. When offered a choice, parasites always colonized better-fed individuals. 5. These results show first that host specialization in our study system occurred. Second, immediate parasite choice clearly operated towards the selection of hosts in good nutritional state.
Resumo:
Trace-element and isotopic compositions of fossilized shark teeth sampled from Miocene marine sediments of the north Alpine Molasse Basin, the Vienna Basin, and the Pannonian Basin generally show evidence of formation in a marine environment under conditions geochemically equivalent to the open ocean. In contrast, two of eight shark teeth from the Swiss Upper Marine Molasse locality of La Moliere have extremely low delta O-18 values (10.3% and 11.3%) and low Sr-87/Sr-86 ratios (0.707840 and 0.707812) compared to other teeth from this locality (21.1%,22.4%o and 0.708421-0.708630). The rare earth element (REE) abundances and patterns from La Moliere not only differ between dentine and enameloid of the same tooth, but also between different teeth, supporting variable conditions of diagenesis at this site. However, the REE patterns of enameloid from the ``exotic'' teeth analyzed for O and Sr isotopic compositions are similar to those of teeth that have O and Sr isotopic compositions typical of a marine setting at this site. Collectively, this suggests that the two ``exotic'' teeth were formed while the sharks frequented a freshwater environment with very low O-18-content and Sr isotopic composition controlled by Mesozoic calcareous rocks. This is consistent with a paleogeography of high-elevation (similar to 2300 m) Miocene Alps adjacent to a marginal sea.
Resumo:
In simultaneous hermaphrodites, gender conflicts that arise from two potential mates sharing the same gender preference may be solved through conditional reciprocity (or gamete trading). Conditional reciprocity had initially been considered widespread, but recent studies suggest that its real occurrence may have been overestimated, possibly because most mating observations have been performed on isolated pairs of individuals. Some resulting patterns (e. g., non-random alternation of sexual roles) were indeed compatible with conditional reciprocity but could also have stemmed from the two partners independently executing their own mating strategy and being experimentally enforced to do so with the same partner. Non-random alternation of gender roles was recently documented in the simultaneously hermaphroditic freshwater snail Physa acuta. To distinguish between conditional and unconditional gender alternations, we observed copulations of individually marked snails reared at three contrasted densities. We showed that density affected the overall frequency of copulations during the first 2 days of the experiment with high-density boxes showing more copulations than low density boxes, but it did not affect gender alternation patterns. A change in gender role was observed more often than expected by chance over two successive copulations by the same individual, confirming previous studies. However, gender switches did not preferentially occur with the same partner. We conclude that gender alternation is not due to conditional reciprocity in P. acuta. It may rather stem from each individual having a preference for gender alternation. We finally discuss the mechanisms and the potential extent of this unconditional reciprocity.
Resumo:
BACKGROUND: The link between host MHC (major histocompatibility complex) genotype and malaria is largely based on correlative data with little or no experimental control of potential confounding factors. We used an experimental mouse model to test for main effects of MHC-haplotypes, MHC heterozygosity, and MHC x parasite clone interactions. We experimentally infected MHC-congenic mice (F2 segregants, homo- and heterozygotes, males and females) with one of two clones of Plasmodium chabaudi and recorded disease progression. RESULTS: We found that MHC haplotype and parasite clone each have a significant influence on the course of the disease, but there was no significant host genotype by parasite genotype interaction. We found no evidence for overdominance nor any other sort of heterozygote advantage or disadvantage. CONCLUSION: When tested under experimental conditions, variation in the MHC can significantly influence the course of malaria. However, MHC heterozygote advantage through overdominance or dominance of resistance cannot be assumed in the case of single-strain infections. Future studies might focus on the interaction between MHC heterozygosity and multiple-clone infections.
Resumo:
Testosterone can benefit individual fitness by increasing ornament colour, aggressiveness, and sperm quality, but it can also impose both metabolic and immunological costs. However, evidence that testosterone causes immuno suppression in freely living populations is scant. We studied the effects of testosterone on one component of the immune system (i.e., the cell-mediated response to phytohaemagglutinin), parasite load, and metabolic rate in the common wall lizard, Podarcis muralis (Laurenti, 1768). For analyses of immunocompetence and parasitism, male lizards were implanted at the end of the breeding season with either empty or testosterone implants and were returned to their site of capture for 5-6 weeks before recapture. For analyses of the effects of testosterone on metabolic rate, male lizards were captured and implanted before hibernation and were held in the laboratory for 1 week prior to calorimetry. Experimental treatment with testosterone decreased the cell-mediated response to the T-cell mitogen phytohemagglutinin and increased mean metabolic rate. No effects of testosterone on the number of ectoparasites, hemoparasites, and resting metabolic rate could be detected. These results are discussed in the framework of the immunocompetence handicap hypothesis and the immuno-redistribution process hypothesis. [Authors]
Resumo:
The major macromolecules on the surface of the parasitic protozoan Leishmania major appear to be down-regulated during transformation of the parasite from an insect-dwelling promastigote stage to an intracellular amastigote stage that invades mammalian macrophages. In contrast, the major parasite glycolipids, the glycoinositol phospholipids (GIPLs), are shown here to be expressed at near-constant levels in both developmental stages. The structures of the GIPLs from tissue-derived amastigotes have been determined by h.p.l.c. analysis of the deaminated and reduced glycan head groups, and by chemical and enzymic sequencing. The deduced structures appear to form a complete biosynthetic series, ranging from Man alpha 1-4GlcN-phosphatidylinositol (PI) to Gal alpha 1-3Galf beta 1-3Man alpha 1-3Man alpha 1-4GlcN-PI (GIPL-2). A small proportion of GIPL-2 was further extended by addition of a Gal residue in either alpha 1-6 or beta 1-3 linkage. From g.c.-m.s. analysis and mild base treatment, all the GIPLs were shown to contain either alkylacylglycerol or lyso-alkylglycerol lipid moieties, where the alkyl chains were predominantly C18:0, with lower levels of C20:0, C22:0 and C24:0. L. major amastigotes also contained at least two PI-specific phospholipase C-resistant glycolipids which are absent from promastigotes. These neutral glycolipids were resistant to both mild acid and mild base hydrolysis, contained terminal beta-Gal residues and were not lost during extensive purification of amastigotes from host cell membranes. It is likely that these glycolipids are glycosphingolipids acquired from the mammalian host. The GIPL profile of L. major amastigotes is compared with the profiles found in L. major promastigotes and L. donovani amastigotes.
Resumo:
The reproductive assurance hypothesis emphasizes that self-fertilization should evolve in species with reduced dispersal capability, low population size or experiencing recurrent bottlenecks. Our work investigates the ecological components of the habitats colonized by the snail, Galba truncatula, that may influence the evolution of selfing. Galba truncatula is a preferential selfer inhabiting freshwater habitats, which vary with respect to the degree of permanence. We considered with a population genetic approach the spatial and the temporal degree of isolation of populations of G. truncatula. We showed that patches at distances of only a few meters are highly structured. The effective population sizes appear quite low, in the order of 10 individuals or less. This study indicates that individuals of the species G. truncatula are likely to be alone in a site and have a low probability of finding a partner from a nearby site to reproduce. These results emphasize the advantage of selfing in this species.
Resumo:
Calcium-dependent protein kinases (CDPKs) are serine/threonine kinases that react in response to calcium which functions as a trigger for several mechanisms in plants and invertebrates, but not in mammals. Recent structural studies have defined the role of calcium in the activation of CDPKs and have elucidated the important structural changes caused by calcium in order to allow the kinase domain of CDPK to bind and phosphorylate the substrate. However, the role of autophosphorylation in CDPKs is still not fully understood. In Plasmodium falciparum, seven CDPKs have been identified by sequence comparison, and four of them have been characterized and assigned to play a role in parasite motility, gametogenesis and egress from red blood cells. Although PfCDPK2 was already discovered in 1997, little is known about this enzyme and its metabolic role. In this work, we have expressed and purified PfCDPK2 at high purity in its unphosphorylated form and characterized its biochemical properties. Moreover, propositions about putative substrates in P. falciparum are made based on the analysis of the phosphorylation sites on the artificial substrate myelin basic protein (MBP).
Resumo:
Self-compatible hermaphroditic organisms that mix self-fertilization and outcrossing are of great interest for investigating the evolution of mating systems. We investigate the evolution of selfing in Lymnaea truncatula, a self-compatible hermaphroditic freshwater snail. We first analyze the consequences of selfing in terms of genetic variability within and among populations and then investigate how these consequences along with the species ecology (harshness of the habitat and parasitism) might govern the evolution of selfing. Snails from 13 localities (classified as temporary or permanent depending on their water availability) were sampled in western Switzerland and genotyped for seven microsatellite loci. F(IS) (estimated on adults) and progeny array analyses (on hatchlings) provided similar selfing rate estimates of 80%. Populations presented a low polymorphism and were highly differentiated (F(ST) = 0.58). Although the reproductive assurance hypothesis would predict higher selfing rate in temporary populations, no difference in selfing level was observed between temporary and permanent populations. However, allelic richness and gene diversity declined in temporary habitats, presumably reflecting drift. Infection levels varied but were not simply related to either estimated population selfing rate or to differences in heterozygosity. These findings and the similar selfing rates estimated for hatchlings and adults suggest that within-population inbreeding depression is low in L. truncatula.