263 resultados para fracture prediction

em Université de Lausanne, Switzerland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of areal bone mineral density (aBMD) for fracture prediction may be enhanced by considering bone microarchitectural deterioration. Trabecular bone score (TBS) helped in redefining a significant subset of non-osteoporotic women as a higher risk group. INTRODUCTION: TBS is an index of bone microarchitecture. Our goal was to assess the ability of TBS to predict incident fracture. METHODS: TBS was assessed in 560 postmenopausal women from the Os des Femmes de Lyon cohort, who had a lumbar spine (LS) DXA scan (QDR 4500A, Hologic) between years 2000 and 2001. During a mean follow-up of 7.8 ± 1.3 years, 94 women sustained 112 fragility fractures. RESULTS: At the time of baseline DXA scan, women with incident fracture were significantly older (70 ± 9 vs. 65 ± 8 years) and had a lower LS_aBMD and LS_TBS (both -0.4SD, p < 0.001) than women without fracture. The magnitude of fracture prediction was similar for LS_aBMD and LS_TBS (odds ratio [95 % confidence interval] = 1.4 [1.2;1.7] and 1.6 [1.2;2.0]). After adjustment for age and prevalent fracture, LS_TBS remained predictive of an increased risk of fracture. Yet, its addition to age, prevalent fracture, and LS_aBMD did not reach the level of significance to improve the fracture prediction. When using the WHO classification, 39 % of fractures occurred in osteoporotic women, 46 % in osteopenic women, and 15 % in women with T-score > -1. Thirty-seven percent of fractures occurred in the lowest quartile of LS_TBS, regardless of BMD. Moreover, 35 % of fractures that occurred in osteopenic women were classified below this LS_TBS threshold. CONCLUSION: In conclusion, LS_aBMD and LS_TBS predicted fractures equally well. In our cohort, the addition of LS_TBS to age and LS_aBMD added only limited information on fracture risk prediction. However, using the lowest quartile of LS_TBS helped in redefining a significant subset of non-osteoporotic women as a higher risk group which is important for patient management.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

SUMMARY: In a randomly selected cohort of Swiss community-dwelling elderly women prospectively followed up for 2.8 +/- 0.6 years, clinical fractures were assessed twice yearly. Bone mineral density (BMD) measured at tibial diaphysis (T-DIA) and tibial epiphysis (T-EPI) using dual-energy X-ray absorptiometry (DXA) was shown to be a valid alternative to lumbar spine or hip BMD in predicting fractures. INTRODUCTION: A study was carried out to determine whether BMD measurement at the distal tibia sites of T-EPI and T-DIA is predictive of clinical fracture risk. METHODS: In a predefined representative cohort of Swiss community-dwelling elderly women aged 70-80 years included in the prospective, multi-centre Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture risk (SEMOF) study, fracture risk profile was assessed and BMD measured at the lumbar spine (LS), hip (HIP) and tibia (T-DIA and T-EPI) using DXA. Thereafter, clinical fractures were reported in a bi-yearly questionnaire. RESULTS: During 1,786 women-years of follow-up, 68 clinical fragility fractures occurred in 61 women. Older age and previous fracture were identified as risk factors for the present fractures. A decrease of 1 standard deviation in BMD values yielded a 1.5-fold (HIP) to 1.8-fold (T-EPI) significant increase in clinical fragility fracture hazard ratio (adjusted for age and previous fracture). All measured sites had comparable performance for fracture prediction (area under the curve range from 0.63 [LS] to 0.68 [T-EPI]). CONCLUSION: Fracture risk prediction with BMD measurements at T-DIA and T-EPI is a valid alternative to BMD measurements at LS or HIP for patients in whom these sites cannot be accessed for clinical, technical or practical reasons.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives: Trabecular Bone Score (TBS, Med-Imaps, France) is an index of bone microarchitecture calculated from antero-posterior spine DXA scan and reported to be associated with fracture in prior case-control studies and in a large prospective study with the Prodigy DXA device. Our aim was to assess the ability of TBS to predict incident fracture and improve the classification of fracture prospectively in the OFELY study.Materials/Methods: TBS was assessed in 564 postmenopausal women (66±8 years old) from the OFELY cohort, who had a spine DXA scan (QDR 4500A, Hologic, USA) between year 2000 and 2001. During a mean follow up of 7.8±1.3 years, 94 women sustained a fragility fracture.Results: At the time of baseline DXA scan, women with incident fracture were significantly older (70±9 vs. 65± 8 years), had a lower spine BMD (T-score: −1.9±1.2 vs. −1.3±1.3, p<0.001) and spine TBS (−3.1%, p<0.001) than women without incident fracture. After adjustment for age, BMI and the presence of prevalent fracture, the magnitude of fracture prediction was similar for spine BMD (OR=1.42 [1.11;1.82] per SD decrease [95% CI]) and TBS (OR=1.34 [1.04;1.74]) but the combination of TBS and spine BMD did not improve fracture prediction. Spine BMD and TBS were both correlated with age (respectively r=−0.17 and −0.49, p<0.001) and correlated together with 39% of TBS explained by spine BMD (r=0.63, p<0.001). When using the WHO classification, 38% of the fractures occurred in osteoporotic (fracture rate=29%), 47% in osteopenic (fracture rate=16%) and 15% in women with T-score >−1 (fracture rate=9%). By classifying our population in tertiles of TBS, we found that 47% of the fractures occurred in the lowest tertile of TBS (fracture rate=23%) and 39% of the fracture that occurred in osteopenic women were in the lowest tertile of TBS.Conclusions: Spine BMD and TBS predicted fractures equally well. The addition of TBS to spine BMD added only limited information on fracture risk prediction in our cohort when considering the all range of BMD. Nevertheless combining the osteopenic T-score and the lowest TBS helped defining a subset of osteopenic women at higher risk of fracture.Disclosure of Interest: None declared.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background:Type 2 diabetes (T2D) is associated with increased fracture risk but paradoxically greater BMD. TBS (trabecular bone score), a novel grey-level texture measurement extracted from DXA images, correlates with 3D parameters of bone micro-architecture. We evaluated the ability of lumbar spine (LS) TBS to account for the increased fracture risk in diabetes. Methods:29,407 women ≥50 years at the time of baseline hip and spine DXA were identified from a database containing all clinical BMD results for the Province of Manitoba, Canada. 2,356 of the women satisfied a well-validated definition for diabetes, the vast majority of whom (>90%) would have T2D. LS L14 TBS was derived for each spine DXA examination blinded to clinical parameters and outcomes. Health service records were assessed for incident non-traumatic major osteoporotic fracture codes (mean follow-up 4.7 years). Results:In linear regression adjusted for FRAX risk factors (age,BMI, glucocorticoids, prior major fracture, rheumatoid arthritis, COPD as a smoking proxy, alcohol abuse) and osteoporosis therapy, diabetes was associated with higher BMD for LS, femoral neck and total hip but lower LS TBS (all p<0.001). Similar results were seen after excluding obese subjects withBMI>30. In logistic regression (Figure), the adjusted odds ratio (OR) for a skeletal measurement in the lowest vs highest tertile was less than 1 for all BMD measurements but increased for LS TBS (adjusted OR 2.61, 95%CI 2.30-2.97). Major osteoporotic fractures were identified in 175 (7.4%) with and 1,493 (5.5%) without diabetes (p < 0.001). LS TBS predicted fractures in those with diabetes (adjusted HR 1.27, 95%CI 1.10-1.46) and without diabetes (HR 1.31, 95%CI 1.24-1.38). LS TBS was an independent predictor of fracture (p<0.05) when further adjusted for BMD (LS, femoral neck or total hip). The explanatory effect of diabetes in the fracture prediction model was greatly reduced when LS TBS was added to the model (indicating that TBS captured a large portion of the diabetes-associated risk), but was paradoxically increased from adding any of the BMD measurements. Conclusions:Lumbar spine TBS is sensitive to skeletal deterioration in postmenopausal women with diabetes, whereas BMD is paradoxically greater. LS TBS predicts osteoporotic fractures in those with diabetes, and captures a large portion of the diabetes-associated fracture risk. Combining LS TBS with BMD incrementally improves fracture prediction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The measurement of BMD by dual-energy X-ray absorptiometry (DXA) is the "gold standard" for diagnosing osteoporosis but does not directly reflect deterioration in bone microarchitecture. The trabecular bone score (TBS), a novel gray-level texture measurement that can be extracted from DXA images, correlates with 3D parameters of bone microarchitecture. Our aim was to evaluate the ability of lumbar spine TBS to predict future clinical osteoporotic fractures. A total of 29,407 women 50 years of age or older at the time of baseline hip and spine DXA were identified from a database containing all clinical results for the Province of Manitoba, Canada. Health service records were assessed for the incidence of nontraumatic osteoporotic fracture codes subsequent to BMD testing (mean follow-up 4.7 years). Lumbar spine TBS was derived for each spine DXA examination blinded to clinical parameters and outcomes. Osteoporotic fractures were identified in 1668 (5.7%) women, including 439 (1.5%) spine and 293 (1.0%) hip fractures. Significantly lower spine TBS and BMD were identified in women with major osteoporotic, spine, and hip fractures (all p < 0.0001). Spine TBS and BMD predicted fractures equally well, and the combination was superior to either measurement alone (p < 0.001). Spine TBS predicts osteoporotic fractures and provides information that is independent of spine and hip BMD. Combining the TBS trabecular texture index with BMD incrementally improves fracture prediction in postmenopausal women. © 2011 American Society for Bone and Mineral Research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rheumatoid arthritis is the only secondary cause of osteoporosis that is considered independent of bone density in the FRAX(®) algorithm. Although input for rheumatoid arthritis in FRAX(®) is a dichotomous variable, intuitively, one would expect that more severe or active disease would be associated with a greater risk for fracture. We reviewed the literature to determine if specific disease parameters or medication use could be used to better characterize fracture risk in individuals with rheumatoid arthritis. Although many studies document a correlation between various parameters of disease activity or severity and decreased bone density, fewer have associated these variables with fracture risk. We reviewed these studies in detail and concluded that disability measures such as HAQ (Health Assessment Questionnaire) and functional class do correlate with clinical fractures but not morphometric vertebral fractures. One large study found a strong correlation with duration of disease and fracture risk but additional studies are needed to confirm this. There was little evidence to correlate other measures of disease such as DAS (disease activity score), VAS (visual analogue scale), acute phase reactants, use of non-glucocorticoid medications and increased fracture risk. We concluded that FRAX(®) calculations may underestimate fracture probability in patients with impaired functional status from rheumatoid arthritis but that this could not be quantified at this time. At this time, other disease measures cannot be used for fracture prediction. However only a few, mostly small studies addressed other disease parameters and further research is needed. Additional questions for future research are suggested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OsteoLaus is a cohort of 1400 women 50 to 80 years living in Lausanne, Switzerland. Clinical risk factors for osteoporosis, bone ultrasound of the heel, lumbar spine and hip bone mineral density (BMD), assessment of vertebral fracture by DXA, and microarchitecture evaluation by TBS (Trabecular Bone Score) will be recorded. TBS is a new parameter obtained after a re-analysis of a DXA exam. TBS is correlated with parameters of microarchitecture. His reproducibility is good. TBS give an added diagnostic value to BMD, and predict osteoporotic fracture (partially) independently to BMD. The position of TBS in clinical routine in complement to BMD and clinical risk factors will be evaluated in the OsteoLaus cohort.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Osteoporotic hip fractures increase dramatically with age and are responsible for considerable morbidity and mortality. Several treatments to prevent the occurrence of hip fracture have been validated in large randomized trials and the current challenge is to improve the identification of individuals at high risk of fracture who would benefit from therapeutic or preventive intervention. We have performed an exhaustive literature review on hip fracture predictors, focusing primarily on clinical risk factors, dual X-ray absorptiometry (DXA), quantitative ultrasound, and bone markers. This review is based on original articles and meta-analyses. We have selected studies that aim both to predict the risk of hip fracture and to discriminate individuals with or without fracture. We have included only postmenopausal women in our review. For studies involving both men and women, only results concerning women have been considered. Regarding clinical factors, only prospective studies have been taken into account. Predictive factors have been used as stand-alone tools to predict hip fracture or sequentially through successive selection processes or by combination into risk scores. There is still much debate as to whether or not the combination of these various parameters, as risk scores or as sequential or concurrent combinations, could help to better predict hip fracture. There are conflicting results on whether or not such combinations provide improvement over each method alone. Sequential combination of bone mineral density and ultrasound parameters might be cost-effective compared with DXA alone, because of fewer bone mineral density measurements. However, use of multiple techniques may increase costs. One problem that precludes comparison of most published studies is that they use either relative risk, or absolute risk, or sensitivity and specificity. The absolute risk of individuals given their risk factors and bone assessment results would be a more appropriate model for decision-making than relative risk. Currently, a group appointed by the World Health Organization and lead by Professor John Kanis is working on such a model. It will therefore be possible to further assess the best choice of threshold to optimize the number of women needed to screen for each country and each treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To compare the prediction of hip fracture risk of several bone ultrasounds (QUS), 7062 Swiss women > or =70 years of age were measured with three QUSs (two of the heel, one of the phalanges). Heel QUSs were both predictive of hip fracture risk, whereas the phalanges QUS was not. INTRODUCTION: As the number of hip fracture is expected to increase during these next decades, it is important to develop strategies to detect subjects at risk. Quantitative bone ultrasound (QUS), an ionizing radiation-free method, which is transportable, could be interesting for this purpose. MATERIALS AND METHODS: The Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk (SEMOF) study is a multicenter cohort study, which compared three QUSs for the assessment of hip fracture risk in a sample of 7609 elderly ambulatory women > or =70 years of age. Two QUSs measured the heel (Achilles+; GE-Lunar and Sahara; Hologic), and one measured the heel (DBM Sonic 1200; IGEA). The Cox proportional hazards regression was used to estimate the hazard of the first hip fracture, adjusted for age, BMI, and center, and the area under the ROC curves were calculated to compare the devices and their parameters. RESULTS: From the 7609 women who were included in the study, 7062 women 75.2 +/- 3.1 (SD) years of age were prospectively followed for 2.9 +/- 0.8 years. Eighty women reported a hip fracture. A decrease by 1 SD of the QUS variables corresponded to an increase of the hip fracture risk from 2.3 (95% CI, 1.7, 3.1) to 2.6 (95% CI, 1.9, 3.4) for the three variables of Achilles+ and from 2.2 (95% CI, 1.7, 3.0) to 2.4 (95% CI, 1.8, 3.2) for the three variables of Sahara. Risk gradients did not differ significantly among the variables of the two heel QUS devices. On the other hand, the phalanges QUS (DBM Sonic 1200) was not predictive of hip fracture risk, with an adjusted hazard risk of 1.2 (95% CI, 0.9, 1.5), even after reanalysis of the digitalized data and using different cut-off levels (1700 or 1570 m/s). CONCLUSIONS: In this elderly women population, heel QUS devices were both predictive of hip fracture risk, whereas the phalanges QUS device was not.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Trabecular bone score (TBS) is a gray-level textural index of bone microarchitecture derived from lumbar spine dual-energy X-ray absorptiometry (DXA) images. TBS is a bone mineral density (BMD)-independent predictor of fracture risk. The objective of this meta-analysis was to determine whether TBS predicted fracture risk independently of FRAX probability and to examine their combined performance by adjusting the FRAX probability for TBS. We utilized individual-level data from 17,809 men and women in 14 prospective population-based cohorts. Baseline evaluation included TBS and the FRAX risk variables, and outcomes during follow-up (mean 6.7 years) comprised major osteoporotic fractures. The association between TBS, FRAX probabilities, and the risk of fracture was examined using an extension of the Poisson regression model in each cohort and for each sex and expressed as the gradient of risk (GR; hazard ratio per 1 SD change in risk variable in direction of increased risk). FRAX probabilities were adjusted for TBS using an adjustment factor derived from an independent cohort (the Manitoba Bone Density Cohort). Overall, the GR of TBS for major osteoporotic fracture was 1.44 (95% confidence interval [CI] 1.35-1.53) when adjusted for age and time since baseline and was similar in men and women (p > 0.10). When additionally adjusted for FRAX 10-year probability of major osteoporotic fracture, TBS remained a significant, independent predictor for fracture (GR = 1.32, 95% CI 1.24-1.41). The adjustment of FRAX probability for TBS resulted in a small increase in the GR (1.76, 95% CI 1.65-1.87 versus 1.70, 95% CI 1.60-1.81). A smaller change in GR for hip fracture was observed (FRAX hip fracture probability GR 2.25 vs. 2.22). TBS is a significant predictor of fracture risk independently of FRAX. The findings support the use of TBS as a potential adjustment for FRAX probability, though the impact of the adjustment remains to be determined in the context of clinical assessment guidelines. © 2015 American Society for Bone and Mineral Research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Frailty, as defined by the index derived from the Cardiovascular Health Study (CHS index), predicts risk of adverse outcomes in older adults. Use of this index, however, is impractical in clinical practice. METHODS: We conducted a prospective cohort study in 6701 women 69 years or older to compare the predictive validity of a simple frailty index with the components of weight loss, inability to rise from a chair 5 times without using arms, and reduced energy level (Study of Osteoporotic Fractures [SOF index]) with that of the CHS index with the components of unintentional weight loss, poor grip strength, reduced energy level, slow walking speed, and low level of physical activity. Women were classified as robust, of intermediate status, or frail using each index. Falls were reported every 4 months for 1 year. Disability (> or =1 new impairment in performing instrumental activities of daily living) was ascertained at 4(1/2) years, and fractures and deaths were ascertained during 9 years of follow-up. Area under the curve (AUC) statistics from receiver operating characteristic curve analysis and -2 log likelihood statistics were compared for models containing the CHS index vs the SOF index. RESULTS: Increasing evidence of frailty as defined by either the CHS index or the SOF index was similarly associated with an increased risk of adverse outcomes. Frail women had a higher age-adjusted risk of recurrent falls (odds ratio, 2.4), disability (odds ratio, 2.2-2.8), nonspine fracture (hazard ratio, 1.4-1.5), hip fracture (hazard ratio, 1.7-1.8), and death (hazard ratio, 2.4-2.7) (P < .001 for all models). The AUC comparisons revealed no differences between models with the CHS index vs the SOF index in discriminating falls (AUC = 0.61 for both models; P = .66), disability (AUC = 0.64; P = .23), nonspine fracture (AUC = 0.55; P = .80), hip fracture (AUC = 0.63; P = .64), or death (AUC = 0.72; P = .10). Results were similar when -2 log likelihood statistics were compared. CONCLUSION: The simple SOF index predicts risk of falls, disability, fracture, and death as well as the more complex CHS index and may provide a useful definition of frailty to identify older women at risk of adverse health outcomes in clinical practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SUMMARY: BMD and clinical risk factors predict hip and other osteoporotic fractures. The combination of clinical risk factors and BMD provide higher specificity and sensitivity than either alone. INTRODUCTION AND HYPOTHESES: To develop a risk assessment tool based on clinical risk factors (CRFs) with and without BMD. METHODS: Nine population-based studies were studied in which BMD and CRFs were documented at baseline. Poisson regression models were developed for hip fracture and other osteoporotic fractures, with and without hip BMD. Fracture risk was expressed as gradient of risk (GR, risk ratio/SD change in risk score). RESULTS: CRFs alone predicted hip fracture with a GR of 2.1/SD at the age of 50 years and decreased with age. The use of BMD alone provided a higher GR (3.7/SD), and was improved further with the combined use of CRFs and BMD (4.2/SD). For other osteoporotic fractures, the GRs were lower than for hip fracture. The GR with CRFs alone was 1.4/SD at the age of 50 years, similar to that provided by BMD (GR = 1.4/SD) and was not markedly increased by the combination (GR = 1.4/SD). The performance characteristics of clinical risk factors with and without BMD were validated in eleven independent population-based cohorts. CONCLUSIONS: The models developed provide the basis for the integrated use of validated clinical risk factors in men and women to aid in fracture risk prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONTEXT: Type 2 diabetes is associated with increased fracture risk but paradoxically greater bone mineral density (BMD). Trabecular bone score (TBS) is derived from the texture of the spine dual x-ray absorptiometry (DXA) image and is related to bone microarchitecture and fracture risk, providing information independent of BMD. OBJECTIVE: This study evaluated the ability of lumbar spine TBS to account for increased fracture risk in diabetes. DESIGN AND SETTING: We performed a retrospective cohort study using BMD results from a large clinical registry for the province of Manitoba, Canada. Patients: We included 29,407 women 50 years old and older with baseline DXA examinations, among whom 2356 had diagnosed diabetes. MAIN OUTCOME MEASURES: Lumbar spine TBS was derived for each spine DXA examination blinded to clinical parameters and outcomes. Health service records were assessed for incident nontraumatic major osteoporotic fractures (mean follow-up 4.7 years). RESULTS: Diabetes was associated with higher BMD at all sites but lower lumbar spine TBS in unadjusted and adjusted models (all P < .001). The adjusted odds ratio (aOR) for a measurement in the lowest vs the highest tertile was less than 1 for BMD (all P < .001) but was increased for lumbar spine TBS [aOR 2.61, 95% confidence interval (CI) 2.30-2.97]. Major osteoporotic fractures were identified in 175 women (7.4%) with and 1493 (5.5%) without diabetes (P < .001). Lumbar spine TBS was a BMD-independent predictor of fracture and predicted fractures in those with diabetes (adjusted hazard ratio 1.27, 95% CI 1.10-1.46) and without diabetes (hazard ratio 1.31, 95% CI 1.24-1.38). The effect of diabetes on fracture was reduced when lumbar spine TBS was added to a prediction model but was paradoxically increased from adding BMD measurements. CONCLUSIONS: Lumbar spine TBS predicts osteoporotic fractures in those with diabetes, and captures a larger portion of the diabetes-associated fracture risk than BMD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To derive a prediction rule by using prospectively obtained clinical and bone ultrasonographic (US) data to identify elderly women at risk for osteoporotic fractures. MATERIALS AND METHODS: The study was approved by the Swiss Ethics Committee. A prediction rule was computed by using data from a 3-year prospective multicenter study to assess the predictive value of heel-bone quantitative US in 6174 Swiss women aged 70-85 years. A quantitative US device to calculate the stiffness index at the heel was used. Baseline characteristics, known risk factors for osteoporosis and fall, and the quantitative US stiffness index were used to elaborate a predictive rule for osteoporotic fracture. Predictive values were determined by using a univariate Cox model and were adjusted with multivariate analysis. RESULTS: There were five risk factors for the incidence of osteoporotic fracture: older age (>75 years) (P < .001), low heel quantitative US stiffness index (<78%) (P < .001), history of fracture (P = .001), recent fall (P = .001), and a failed chair test (P = .029). The score points assigned to these risk factors were as follows: age, 2 (3 if age > 80 years); low quantitative US stiffness index, 5 (7.5 if stiffness index < 60%); history of fracture, 1; recent fall, 1.5; and failed chair test, 1. The cutoff value to obtain a high sensitivity (90%) was 4.5. With this cutoff, 1464 women were at lower risk (score, <4.5) and 4710 were at higher risk (score, >or=4.5) for fracture. Among the higher-risk women, 6.1% had an osteoporotic fracture, versus 1.8% of women at lower risk. Among the women who had a hip fracture, 90% were in the higher-risk group. CONCLUSION: A prediction rule obtained by using quantitative US stiffness index and four clinical risk factors helped discriminate, with high sensitivity, women at higher versus those at lower risk for osteoporotic fracture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Several susceptibility genes for type 2 diabetes have been discovered recently. Individually, these genes increase the disease risk only minimally. The goals of the present study were to determine, at the population level, the risk of diabetes in individuals who carry risk alleles within several susceptibility genes for the disease and the added value of this genetic information over the clinical predictors. METHODS: We constructed an additive genetic score using the most replicated single-nucleotide polymorphisms (SNPs) within 15 type 2 diabetes-susceptibility genes, weighting each SNP with its reported effect. We tested this score in the extensively phenotyped population-based cross-sectional CoLaus Study in Lausanne, Switzerland (n = 5,360), involving 356 diabetic individuals. RESULTS: The clinical predictors of prevalent diabetes were age, BMI, family history of diabetes, WHR, and triacylglycerol/HDL-cholesterol ratio. After adjustment for these variables, the risk of diabetes was 2.7 (95% CI 1.8-4.0, p = 0.000006) for individuals with a genetic score within the top quintile, compared with the bottom quintile. Adding the genetic score to the clinical covariates improved the area under the receiver operating characteristic curve slightly (from 0.86 to 0.87), yet significantly (p = 0.002). BMI was similar in these two extreme quintiles. CONCLUSIONS/INTERPRETATION: In this population, a simple weighted 15 SNP-based genetic score provides additional information over clinical predictors of prevalent diabetes. At this stage, however, the clinical benefit of this genetic information is limited.