4 resultados para fluorescent brightening agents

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mouse has emerged as an animal model for many diseases. At IRO, we have used this animal to understand the development of many eye diseases and treatment of some of them. Precise evaluation of vision is a prerequisite for both these approaches. In this unit we describe three ways to measure vision: testing the optokinetic response, and evaluating the fundus by direct observation and by fluorescent angiography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential and applicability of UHPSFC-MS/MS for anti-doping screening in urine samples were tested for the first time. For this purpose, a group of 110 doping agents with diverse physicochemical properties was analyzed using two separation techniques, namely UHPLC-MS/MS and UHPSFC-MS/MS in both ESI+ and ESI- modes. The two approaches were compared in terms of selectivity, sensitivity, linearity and matrix effects. As expected, very diverse retentions and selectivities were obtained in UHPLC and UHPSFC, proving a good complementarity of these analytical strategies. In both conditions, acceptable peak shapes and MS detection capabilities were obtained within 7min analysis time, enabling the application of these two methods for screening purposes. Method sensitivity was found comparable for 46% of tested compounds, while higher sensitivity was observed for 21% of tested compounds in UHPLC-MS/MS and for 32% in UHPSFC-MS/MS. The latter demonstrated a lower susceptibility to matrix effects, which were mostly observed as signal suppression. In the case of UHPLC-MS/MS, more serious matrix effects were observed, leading typically to signal enhancement and the matrix effect was also concentration dependent, i.e., more significant matrix effects occurred at the lowest concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cytoskeleton, composed of actin filaments, intermediate filaments, and microtubules, is a highly dynamic supramolecular network actively involved in many essential biological mechanisms such as cellular structure, transport, movements, differentiation, and signaling. As a first step to characterize the biophysical changes associated with cytoskeleton functions, we have developed finite elements models of the organization of the cell that has allowed us to interpret atomic force microscopy (AFM) data at a higher resolution than that in previous work. Thus, by assuming that living cells behave mechanically as multilayered structures, we have been able to identify superficial and deep effects that could be related to actin and microtubule disassembly, respectively. In Cos-7 cells, actin destabilization with Cytochalasin D induced a decrease of the visco-elasticity close to the membrane surface, while destabilizing microtubules with Nocodazole produced a stiffness decrease only in deeper parts of the cell. In both cases, these effects were reversible. Cell softening was measurable with AFM at concentrations of the destabilizing agents that did not induce detectable effects on the cytoskeleton network when viewing the cells with fluorescent confocal microscopy. All experimental results could be simulated by our models. This technology opens the door to the study of the biophysical properties of signaling domains extending from the cell surface to deeper parts of the cell.