239 resultados para fluorescence probe technique
em Université de Lausanne, Switzerland
Resumo:
Pancreatic β-cells play central roles in blood glucose homeostasis. Beside insulin, these cells release neurotransmitters and other signaling molecules stored in synaptic-like microvesicles (SLMVs). We monitored SLMV exocytosis by transfecting a synaptophysin-pHluorin construct and by visualizing the cells by Total Internal Reflection Fluorescence (TIRF) microscopy. SLMV fusion was elicited by 20 mM glucose and by depolarizing K(+) concentrations with kinetics comparable to insulin secretion. SLMV exocytosis was prevented by Tetanus and Botulinum-C neurotoxins indicating that the fusion machinery of these organelles includes VAMP-2/-3 and Syntaxin-1, respectively. Sequential visualization of SLMVs by TIRF and epifluorescence microscopy showed that after fusion the vesicle components are rapidly internalized and the organelles re-acidified. Analysis of single fusion episodes revealed the existence of two categories of events. While under basal conditions transient fusion events prevailed, long-lasting episodes were more frequent upon secretagogue exposure. Our observations unveiled similarities between the mechanism of exocytosis of insulin granules and SLMVs. Thus, diabetic conditions characterized by defective insulin secretion are most probably associated also with inappropriate release of molecules stored in SLMVs. The assessment of the contribution of SLMV exocytosis to the manifestation of the disease will be facilitated by the use of the imaging approach described in this study.
Resumo:
BACKGROUND AND OBJECTIVE: In bladder cancer, conventional white light endoscopic examination of the bladder does not provide adequate information about the presence of "flat" urothelial lesions such as carcinoma in situ. In the present investigation, we examine a new technique for the photodetection of such lesions by the imaging of protoporphyrin IX (PpIX) fluorescence following topical application of 5-aminolevulinic acid (ALA). STUDY DESIGN/MATERIALS AND METHODS: Several hours after bladder instillation of an aqueous solution of ALA in 34 patients, a Krypton ion laser or a filtered Xenon arc-lamp was used to excite PpIX fluorescence. Tissue samples for histological analysis were taken while observing the bladder wall either by means of a video camera, or by direct endoscopic observation. RESULTS: A good correlation was found between the PpIX fluorescence and the histopathological diagnosis. On a total of 215 biopsies, 143 in fluorescent and 72 in nonfluorescent areas, all visible tumors on white light cytoscopy appeared in a bright red fluorescence with the photodetection technique. In addition, this method permitted to discover 47 unsuspected carcinomatous lesions on white light observation, among which 40% were carcinoma in situ. CONCLUSION: PpIX fluorescence induced by instillation into the bladder of 5-ALA is an efficient method of mapping the mucosa in bladder carcinoma.
Resumo:
Tetrasomy 8 constitutes a relatively rare recurring chromosome defect in myeloid disorders. The patient reported here, a 71-year-old man, presented with tetrasomy 8 as the sole chromosome abnormality associated with an acute nonlymphocytic leukemia of the M2 type. He failed to respond to chemotherapy and died one year after diagnosis. Following conventional cytogenetics and fluorescence in situ hybridization (FISH) with a centromeric probe specific for chromosome 8, tetrasomy 8 was detected in 61% of the metaphases analyzed and trisomy 8 in 39%. FISH analysis of interphase nuclei confirmed the existence of tetrasomic (35%) and trisomic cells (56%) and revealed a number of cells with two chromosomes 8 (8%). This normal population may represent lymphocytes or myeloid cells that escaped conventional analysis due to their inability to divide or to the small number of metaphases available. The relatively higher proportion of tetrasomic cells in metaphase compared with interphase may be attributed to a proliferative advantage of tetrasomic cells in vitro or to the longer duration of their cell cycle. The simultaneous presence of trisomic and tetrasomic cells confirms the hypothesis of a clonal relationship between trisomy 8 and tetrasomy 8. Our case brings further evidence to the specificity of tetrasomy 8 to myeloid disorders and to the association of this chromosome abnormality with a relatively poor prognosis. However, new patients must be studied to further delineate this cytogenetic entity.
Adenovirus-mediated gene transfer into selected liver segments using a vascular exclusion technique.
Resumo:
Adenovirus-mediated gene therapy is hampered by severe virus-related toxicity, especially to the liver. The aim of the present study was to test the ability of a vascular exclusion technique to achieve transgene expression within selected liver segments, thus minimizing both viral and transgene product toxicity to the liver. An E1-E3-deleted replication-deficient adenovirus expressing a green fluorescent protein (GFP) reporter gene was injected into the portal vein of BDIX rats, with simultaneous clamping of the portal vein tributaries to liver segments II, III, IV, V, and VIII. GFP expression and inflammatory infiltrate were measured in the different segments of the liver and compared with those of the livers of animals receiving the viral vector in the portal vein without clamping. The GFP expression was significantly higher in the selectively perfused segments of the liver as compared with the non-perfused segments (p < 0.0001) and with the livers of animals that received the vector in the portal vein without clamping (p < 0.0001). Accordingly, the inflammatory infiltrate was more intense in the selectively perfused liver segments as compared with all other groups (p < 0.0001). Fluorescence was absent in lungs and kidneys and minimal in spleen. The clinical usefulness of adenovirus-mediated gene transfer to the liver largely depends on the reduction of its liver toxicity. Clamping of selected portal vein branches during injection allows for delivery of genes of interest to targeted liver segments. Transgene expression confined to selected liver segments may be useful in the treatment of focal liver diseases, including metastases.
Resumo:
Antibiotic-resistant pathogens are a major health concern in everyday clinical practice. Because their detection by conventional microbial techniques requires minimally 24 h, some of us have recently introduced a nanomechanical sensor, which can reveal motion at the nanoscale. By monitoring the fluctuations of the sensor, this technique can evidence the presence of bacteria and their susceptibility to antibiotics in less than 1 h. Their amplitude correlates to the metabolism of the bacteria and is a powerful tool to characterize these microorganisms at low densities. This technique is new and calls for an effort to optimize its protocol and determine its limits. Indeed, many questions remain unanswered, such as the detection limits or the correlation between the bacterial distribution on the sensor and the detection's output. In this work, we couple fluorescence microscopy to the nanomotion investigation to determine the optimal experimental protocols and to highlight the effect of the different bacterial distributions on the sensor.
Resumo:
OBJECTIVE: Transthoracic echocardiography (TTE) has been used clinically to disobstruct venous drainage cannula and to optimise placement of venous cannulae in the vena cava but it has never been used to evaluate performance capabilities. Also, little progress has been made in venous cannula design in order to optimise venous return to the heart lung machine. We designed a self-expandable Smartcanula (SC) and analysed its performance capability using echocardiography. METHODS: An epicardial echocardiography probe was placed over the SC or control cannula (CTRL) and a Doppler image was obtained. Mean (V(m)) and maximum (V(max)) velocities, flow and diameter were obtained. Also, pressure drop (DeltaP(CPB)) was obtained between the central venous pressure and inlet to venous reservoir. LDH and Free Hb were also compared in 30 patients. Comparison was made between the two groups using the student's t-test with statistical significance established when p<0.05. RESULTS: Age for the SC and CC groups were 61.6+/-17.6 years and 64.6+/-13.1 years, respectively. Weight was 70.3+/-11.6 kg and 72.8+/-14.4 kg, respectively. BSA was 1.80+/-0.2 m(2) and 1.82+/-0.2 m(2), respectively. CPB times were 114+/-53 min and 108+/-44 min, respectively. Cross-clamp time was 59+/-15 min and 76+/-29 min, respectively (p=NS). Free-Hb was 568+/-142 U/l versus 549+/-271 U/l post-CPB for the SC and CC, respectively (p=NS). LDH was 335+/-73 mg/l versus 354+/-116 mg/l for the SC and CC, respectively (p=NS). V(m) was 89+/-10 cm/s (SC) versus 63+/-3 cm/s (CC), V(max) was 139+/-23 cm/s (SC) versus 93+/-11 cm/s (CC) (both p<0.01). DeltaP(CPB) was 30+/-10 mmHg (SC) versus 43+/-13 mmHg (CC) (p<0.05). A Bland-Altman test showed good agreement between the two devices used concerning flow rate calculations between CPB and TTE (bias 300 ml+/-700 ml standard deviation). CONCLUSIONS: This novel Smartcanula design, due to its self-expanding principle, provides superior flow characteristics compared to classic two stage venous cannula used for adult CPB surgery. No detrimental effects were observed concerning blood damage. Echocardiography was effective in analysing venous cannula performance and velocity patterns.
Resumo:
The human Me14-D12 antigen is a cell surface glycoprotein regulated by interferon-gamma (IFN-gamma) on tumor cell lines of neuroectodermal origin. It consists of two non-convalently linked subunits with apparent mol. wt sizes of 33,000 and 38,000. Here we describe the molecular cloning of a genomic probe for the Me14-D12 gene using the gene transfer approach. Mouse Ltk- cells were stably cotransfected with human genomic DNA and the Herpes Simplex virus thymidine kinase (TK) gene. Primary and secondary transfectants expressing the Me14-D12 antigen were isolated after selection in HAT medium by repeated sorting on a fluorescence activated cell sorter (FACS). A recombinant phage harboring a 14.3 kb insert of human DNA was isolated from a genomic library made from a positive secondary transfectant cell line. A specific probe derived from the phage DNA insert allowed the identification of two mRNAs of 3.5 kb and 2.2 kb in primary and secondary L cell transfectants, as well as in human melanoma cell lines expressing the Me14-D12 antigen. The regulation of Me14-D12 antigen by INF-gamma was retained in the L cell transfectants and could be detected both at the level of protein and mRNA expression.
Resumo:
Astrocytes can experience large intracellular Na+ changes following the activation of the Na+-coupled glutamate transport. The present study investigated whether cytosolic Na+ changes are transmitted to mitochondria, which could therefore influence their function and contribute to the overall intracellular Na+ regulation. Mitochondrial Na+ (Na+(mit)) changes were monitored using the Na+-sensitive fluorescent probe CoroNa Red (CR) in intact primary cortical astrocytes, as opposed to the classical isolated mitochondria preparation. The mitochondrial localization and Na+ sensitivity of the dye were first verified and indicated that it can be safely used as a selective Na+(mit) indicator. We found by simultaneously monitoring cytosolic and mitochondrial Na+ using sodium-binding benzofuran isophthalate and CR, respectively, that glutamate-evoked cytosolic Na+ elevations are transmitted to mitochondria. The resting Na+(mit) concentration was estimated at 19.0 +/- 0.8 mM, reaching 30.1 +/- 1.2 mM during 200 microM glutamate application. Blockers of conductances potentially mediating Na+ entry (calcium uniporter, monovalent cation conductances, K+(ATP) channels) were not able to prevent the Na+(mit) response to glutamate. However, Ca2+ and its exchange with Na+ appear to play an important role in mediating mitochondrial Na+ entry as chelating intracellular Ca2+ with BAPTA or inhibiting Na+/Ca2+ exchanger with CGP-37157 diminished the Na+(mit) response. Moreover, intracellular Ca2+ increase achieved by photoactivation of caged Ca2+ also induced a Na+(mit) elevation. Inhibition of mitochondrial Na/H antiporter using ethylisopropyl-amiloride caused a steady increase in Na+(mit) without increasing cytosolic Na+, indicating that Na+ extrusion from mitochondria is mediated by these exchangers. Thus, mitochondria in intact astrocytes are equipped to efficiently sense cellular Na+ signals and to dynamically regulate their Na+ content.
Resumo:
Correlative fluorescence and electron microscopy has become an indispensible tool for research in cell biology. The integrated Laser and Electron Microscope (iLEM) combines a Fluorescence Microscope (FM) and a Transmission Electron Microscope (TEM) within one set-up. This unique imaging tool allows for rapid identification of a region of interest with the FM, and subsequent high resolution TEM imaging of this area. Sample preparation is one of the major challenges in correlative microscopy of a single specimen; it needs to be apt for both FM and TEM imaging. For iLEM, the performance of the fluorescent probe should not be impaired by the vacuum of the TEM. In this technical note, we have compared the fluorescence intensity of six fluorescent probes in a dry, oxygen free environment relative to their performance in water. We demonstrate that the intensity of some fluorophores is strongly influenced by its surroundings, which should be taken into account in the design of the experiment. Furthermore, a freeze-substitution and Lowicryl resin embedding protocol is described that yields excellent membrane contrast in the TEM but prevents quenching of the fluorescent immuno-labeling. The embedding protocol results in a single specimen preparation procedure that performs well in both FM and TEM. Such procedures are not only essential for the iLEM, but also of great value to other correlative microscopy approaches.
Resumo:
Hyperpolarization by dissolution dynamic nuclear polarization (DNP) is a versatile technique to dramatically enhance the nuclear magnetic resonance (NMR) signal intensity of insensitive long-T1 nuclear spins such as (6) Li. The (6) Li longitudinal relaxation of lithium ions in aqueous solutions strongly depends on the concentration of paramagnetic species, even if they are present in minute amounts. We herein demonstrate that blood oxygenation can be readily detected by taking advantage of the (6) Li signal enhancement provided by dissolution DNP, together with the more than 10% decrease in (6) Li longitudinal relaxation as a consequence of the presence of paramagnetic deoxyhemoglobin. Copyright © 2015 John Wiley & Sons, Ltd.
Resumo:
Furosemide (FD: Lasix) is a loop diuretic which strongly increases both urine flow and electrolyte urinary excretion. Healthy volunteers were administered 40 mg orally (dissolved in water) and concentrations of FD were determined in serum and urine for up to 6 h for eight subjects, who absorbed water at a rate of 400 ml/h. Quantification was performed by HPLC with fluorescence detection (excitation at 233 nm, emission at 389 nm) with a limit of detection of 5 ng/ml for a 300-microliters sample. The elution of FD was completed within 4 min using a gradient of acetonitrile concentration rising from 30 to 50% in 0.08 M phosphoric acid. The delay to the peak serum concentration ranged from 60 to 120 min. FD was still easily measurable in the sera from all subjects 6 h after administration. In urine, the excretion rates reached their maximum between 1 and 3 h. The total amount of FD excreted in the urine averaged 11.2 mg (range 7.6-14.0 mg), with a mean urine volume of 3024 ml (range 2620-3596 ml). Moreover, the urine density was lower than 1.010 (recommended as an upper limit in doping analysis to screen diuretics) only for 2 h. An additional volunteer was administered 40 mg of FD and his urine was collected over a longer period. FD was still detectable 48 h after intake. Gas chromatography-mass spectrometry with different types of ionization was used to confirm the occurrence of FD after permethylation of the extract. Negative-ion chemical ionization, with ammonia as reactant gas, was found to be the most sensitive method of detection.
Resumo:
We present a new method for lysis of single cells in continuous flow, where cells are sequentially trapped, lysed and released in an automatic process. Using optimized frequencies, dielectrophoretic trapping allows exposing cells in a reproducible way to high electrical fields for long durations, thereby giving good control on the lysis parameters. In situ evaluation of cytosol extraction on single cells has been studied for Chinese hamster ovary (CHO) cells through out-diffusion of fluorescent molecules for different voltage amplitudes. A diffusion model is proposed to correlate this out-diffusion to the total area of the created pores, which is dependent on the potential drop across the cell membrane and enables evaluation of the total pore area in the membrane. The dielectrophoretic trapping is no longer effective after lysis because of the reduced conductivity inside the cells, leading to cell release. The trapping time is linked to the time required for cytosol extraction and can thus provide additional validation of the effective cytosol extraction for non-fluorescent cells. Furthermore, the application of one single voltage for both trapping and lysis provides a fully automatic process including cell trapping, lysis, and release, allowing operating the device in continuous flow without human intervention.
Resumo:
To directly assess the binding of exogenous peptides to cell surface-associated MHC class I molecules at the single cell level, we examined the possibility of combining the use of biotinylated peptide derivatives with an immunofluorescence detection system based on flow cytometry. Various biotinylated derivatives of the adenovirus 5 early region 1A peptide 234-243, an antigenic peptide recognized by CTL in the context of H-2Db, were first screened in functional assays for their ability to bind efficiently to Db molecules on living cells. Suitable peptide derivatives were then tested for their ability to generate positive fluorescence signals upon addition of phycoerythrin-labeled streptavidin to peptide derivative-bearing cells. Strong fluorescent staining of Db-expressing cells was achieved after incubation with a peptide derivative containing a biotin group at the C-terminus. Competition experiments using the unmodified parental peptide as well as unrelated peptides known to bind to Kd, Kb, or Db, respectively, established that binding of the biotinylated peptide to living cells was Db-specific. By using Con A blasts derived from different H-2 congenic mouse strains, it could be shown that the biotinylated peptide bound only to Db among > 20 class I alleles tested. Moreover, binding of the biotinylated peptide to cells expressing the Dbm13 and Dbm14 mutant molecules was drastically reduced compared to Db. Binding of the biotinylated peptide to freshly isolated Db+ cells was readily detectable, allowing direct assessment of the relative amount of peptide bound to distinct lymphocyte subpopulations by three-color flow cytometry. While minor differences between peripheral T and B cells could be documented, thymocytes were found to differ widely in their peptide binding activity. In all cases, these differences correlated positively with the differential expression of Db at the cell surface. Finally, kinetic studies at different temperatures strongly suggested that the biotinylated peptide first associated with Db molecules available constitutively at the cell surface and then with newly arrived Db molecules.