58 resultados para feeding restriction
em Université de Lausanne, Switzerland
Resumo:
Restriction site-associated DNA sequencing (RADseq) provides researchers with the ability to record genetic polymorphism across thousands of loci for nonmodel organisms, potentially revolutionizing the field of molecular ecology. However, as with other genotyping methods, RADseq is prone to a number of sources of error that may have consequential effects for population genetic inferences, and these have received only limited attention in terms of the estimation and reporting of genotyping error rates. Here we use individual sample replicates, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome. We then use sample replicates to (i) optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci; and (ii) quantify error rates for loci, alleles and single-nucleotide polymorphisms. As an empirical example, we use a double-digest RAD data set of a nonmodel plant species, Berberis alpina, collected from high-altitude mountains in Mexico.
Resumo:
Les virus exploitent la machinerie cellulaire de l'hôte pour se répliquer. Ils doivent s'adapter pour infecter la cellule hôte de manière optimale tout en échappant à la vigilance du système de défense de l'hôte. Ainsi l'hôte et les virus se livrent à de constantes batailles évolutives. Mon travail de thèse a porté sur l'étude des signatures évolutives de facteurs de l'hôte agissant comme des 'facteurs de restriction' en bloquant la réplication rétrovirale chez les primates. Plus spécifiquement, mon travail a visé à utiliser des données évolutives pour renseigner les analyses fonctionnelles et la biologie. Nous avons étudié le facteur anti-VIH-1 nommé TRIM5a (i) chez les prosimiens pour mieux comprendre son rôle dans le contrôle d'un lentivirus endogène, (ii) dans son activité contre d'autres anciennes infections représentées par des rétrovirus endogènes humains et (iii) en tant que protéine capable de générer des mutants de la capside. Premièrement nous nous sommes intéressés à TRIM5a chez deux espèces de lémuriens dont Microcebus murinus qui porte le lentivirus endogène PSIV dans son génome depuis plusieurs millions d'années,. Nous avons observé que TRIM5a chez M. murinus a un spectre d'activité antivirale réduit à l'opposé de TRIM5a chez le Lemur catta - non porteur du PSIV endogène - qui bloque une large variété de rétrovirus dont le PSIV. De ce fait TRIM5a aurait pu contribuer à protéger certaines espèces de lémuriens vis-à-vis d'anciennes infections par le PSIV. A l'inverse du PSIV, des virus dérivés des rétrovirus endogènes humains HERV-K and HERV-H se sont révélés largement résistants à l'inhibition par TRIM5a. Ces données illustrent une absence de protection par TRIM5a face à d'autres anciennes infections rétrovirales. Puis, pour évaluer l'impact de la protéine TRIM5a humaine sur le VIH-1, nous avons testé l'effet de mutations des résidues sous sélection positive dans la capside du VIH-1 sur l'inhibition par TRIM5a. Nos résultats montrent que TRIM5a ne jouerait pas un rôle significatif dans l'évolution de la capside du VIH-1. Enfin notre travail a porté sur le facteur anti-VIH-1 SAMHD1 récemment découvert, que nous avons séquencé chez 25 espèces de primates. L'analyse évolutive des sites sous sélection positive et des expériences fonctionnelles ont permis d'identifier le domaine de SAMHD1 interagissant avec la protéine lentivirale Vpx. De même que d'autres protéines virales contrecarrent les facteurs de restriction en les menant à la dégradation, nous avons observé que Vpx induit la dégradation de SAMHD1 de manière spécifique à l'espèce. Ces découvertes contribuent à comprendre comment les facteurs de restriction et les virus co-évoluent pour se neutraliser l'un l'autre. - Viruses hijack the host cellular machinery to replicate. They adapt to infect optimally host cells while escaping host defense systems. Viruses and the host coevolve in an evolutionary struggle. My thesis work has been devoted to study the evolutionary signatures of host factors acting as restriction factors that block retroviral replication in primates. Specifically, my work aimed at using evolutionary data to inform functional analyses and biology. We studied the anti-HIV-1 factor TRIM5a (i) in prosimians to better understand its possible role in the control of an endogenous lentivirus, (ii) in its activity against other ancient infections - as represented by HERVs, and (iii) as a protein capable of generating escape mutants in the viral capsid. First, my work focused on two lemur species, one of which was the gray mouse lemur that carries the endogenous lentivirus PSIV integrated in its genome for several million years. TRIM5a from gray mouse lemur exhibited a limited antiviral spectrum as opposed to TRIM5a from ring-tailed lemur - not a host of PSIV - that is able to block diverse retroviruses notably PSIV. These results support the possible contribution of TRIM5a in protecting lemur species from ancient infection by PSIV. In contrast, chimeric viruses derived from two human endogenous retroviruses were broadly resistant to TRIM5a-mediated restriction, suggesting TRIM5a lack of activity against other types of ancient infections. To evaluate the recent impact of human TRIM5a on HIV-1 evolution, we tested whether variants at positively selected sites in the HIV-1 capsid affected the ability of human TRIM5a alleles to restrict HIV-1. Our results indicate that TRIM5a does not play a significant role in the evolution of HIV1 capsid. At last, our work concentrated on the newly discovered anti-HIV-1 restriction factor SAMHD1. We determined its coding sequence in a panel of 25 species of primates. Evolutionary analyses of positively selected sites in SAMHD1 domains and functional assays identified the domain of SAMHD1 interacting with the lentiviral protein Vpx. Similar to other viral countermeasures targeting cellular restriction factors, Vpx was responsible of the degradation of SAMHD1 orthologs in a species-specific manner. These findings contributed to understanding how restriction factors and viruses evolve to counteract each other.
Resumo:
Retroviruses are both powerful evolutionary forces and dangerous threats to genome integrity. As such, they have imposed strong selective pressure on their hosts, notably triggering the emergence of restriction factors, such as TRIM5 alpha, that act as potent barriers to their cross-species transmission. TRIM5 alpha orthologues from different primates have distinct retroviral restriction patterns, largely dictated by the sequence of their C-terminal PRYSPRY domain, which binds the capsid protein of incoming virions. Here, by combining genetic and functional analyses of human and squirrel monkey TRIM5 alpha, we demonstrate that the coiled-coil domain of this protein, thus far essentially known for mediating oligomerization, also conditions the spectrum of antiretroviral activity. Furthermore, we identify three coiled-coil residues responsible for this effect, one of which has been under positive selection during primate evolution, notably in New World monkeys. These results indicate that the PRYSPRY and coiled-coil domains cooperate to determine the specificity of TRIM5 alpha-mediated capture of retroviral capsids, shedding new light on this complex event.
Resumo:
The antiviral potency of the cytokine IFN-α has been long appreciated but remains poorly understood. A number of studies have suggested that induction of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3 (APOBEC3) and bone marrow stromal cell antigen 2 (BST-2/tetherin/CD317) retroviral restriction factors underlies the IFN-α-mediated suppression of HIV-1 replication in vitro. We sought to characterize the as-yet-undefined relationship between IFN-α treatment, retroviral restriction factors, and HIV-1 in vivo. APOBEC3G, APOBEC3F, and BST-2 expression levels were measured in HIV/hepatitis C virus (HCV)-coinfected, antiretroviral therapy-naïve individuals before, during, and after pegylated IFN-α/ribavirin (IFN-α/riba) combination therapy. IFN-α/riba therapy decreased HIV-1 viral load by -0.921 (±0.858) log(10) copies/mL in HIV/HCV-coinfected patients. APOBEC3G/3F and BST-2 mRNA expression was significantly elevated during IFN-α/riba treatment in patient-derived CD4+ T cells (P < 0.04 and P < 0.008, paired Wilcoxon), and extent of BST-2 induction was correlated with reduction in HIV-1 viral load during treatment (P < 0.05, Pearson's r). APOBEC3 induction during treatment was correlated with degree of viral hypermutation (P < 0.03, Spearman's ρ), and evolution of the HIV-1 accessory protein viral protein U (Vpu) during IFN-α/riba treatment was suggestive of increased BST-2-mediated selection pressure. These data suggest that host restriction factors play a critical role in the antiretroviral capacity of IFN-α in vivo, and warrant investigation into therapeutic strategies that specifically enhance the expression of these intrinsic immune factors in HIV-1-infected individuals.
Resumo:
PURPOSE OF REVIEW: To provide updated insights into innate antiviral immunity and highlight prototypical evolutionary features of well characterized HIV restriction factors. RECENT FINDINGS: Recently, a new HIV restriction factor, Myxovirus resistance 2, has been discovered and the region/residue responsible for its activity identified using an evolutionary approach. Furthermore, IFI16, an innate immunity protein known to sense several viruses, has been shown to contribute to the defense to HIV-1 by causing cell death upon sensing HIV-1 DNA. SUMMARY: Restriction factors against HIV show characteristic signatures of positive selection. Different patterns of accelerated sequence evolution can distinguish antiviral strategies--offense or defence--as well as the level of specificity of the antiviral properties. Sequence analysis of primate orthologs of restriction factors serves to localize functional domains and sites responsible for antiviral action. We use recent discoveries to illustrate how evolutionary genomic analyses help identify new antiviral genes and their mechanisms of action.
Resumo:
Soil pseudomonads increase their competitiveness by producing toxic secondary metabolites, which inhibit competitors and repel predators. Toxin production is regulated by cell-cell signalling and efficiently protects the bacterial population. However, cell communication is unstable, and natural populations often contain signal blind mutants displaying an altered phenotype defective in exoproduct synthesis. Such mutants are weak competitors, and we hypothesized that their fitness depends on natural communities on the exoproducts of wild-type bacteria, especially defence toxins. We established mixed populations of wild-type and signal blind, non-toxic gacS-deficient mutants of Pseudomonas fluorescens CHA0 in batch and rhizosphere systems. Bacteria were grazed by representatives of the most important bacterial predators in soil, nematodes (Caenorhabditis elegans) and protozoa (Acanthamoeba castellanii). The gacS mutants showed a negative frequency-dependent fitness and could reach up to one-third of the population, suggesting that they rely on the exoproducts of the wild-type bacteria. Both predators preferentially consumed the mutant strain, but populations with a low mutant load were resistant to predation, allowing the mutant to remain competitive at low relative density. The results suggest that signal blind Pseudomonas increase their fitness by exploiting the toxins produced by wild-type bacteria, and that predation promotes the production of bacterial defence compounds by selectively eliminating non-toxic mutants. Therefore, predators not only regulate population dynamics of soil bacteria but also structure the genetic and phenotypic constitution of bacterial communities.
Resumo:
Restriction site-associated DNA sequencing (RADseq) provides researchers with the ability to record genetic polymorphism across thousands of loci for nonmodel organisms, potentially revolutionizing the field of molecular ecology. However, as with other genotyping methods, RADseq is prone to a number of sources of error that may have consequential effects for population genetic inferences, and these have received only limited attention in terms of the estimation and reporting of genotyping error rates. Here we use individual sample replicates, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome. We then use sample replicates to (i) optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci; and (ii) quantify error rates for loci, alleles and single-nucleotide polymorphisms. As an empirical example, we use a double-digest RAD data set of a nonmodel plant species, Berberis alpina, collected from high-altitude mountains in Mexico.
Resumo:
Near infrared spectroscopy (NIRS) is a non-invasive method of estimating the haemoglobin concentration changes in certain tissues. It is frequently used to monitor oxygenation of the brain in neonates. At present it is not clear whether near infrared spectroscopy of other organs (e.g. the liver as a corresponding site in the splanchnic region, which reacts very sensitively to haemodynamic instability) provides reliable values on their tissue oxygenation. The aim of the study was to test near infrared spectroscopy by measuring known physiologic changes in tissue oxygenation of the liver in newborn infants during and after feeding via a naso-gastric tube. The test-retest variability of such measurements was also determined. On 28 occasions in 25 infants we measured the tissue oxygenation index (TOI) of the liver and the brain continuously before, during and 30 minutes after feeding via a gastric tube. Simultaneously we measured arterial oxygen saturation (SaO2), heart rate (HR) and mean arterial blood pressure (MAP). In 10 other newborn infants we performed a test-retest analysis of the liver tissue oxygenation index to estimate the variability in repeated intra-individual measurements. The tissue oxygenation index of the liver increased significantly from 56.7 +/- 7.5% before to 60.3 +/- 5.6% after feeding (p < 0.005), and remained unchanged for the next 30 minutes. The tissue oxygenation index of the brain (62.1 +/- 9.7%), SaO2 (94.4 +/- 7.1%), heart rate (145 +/- 17.3 min-1) and mean arterial blood pressure (52.8 +/- 10.2 mm Hg) did not change significantly. The test-retest variability for intra-individual measurements was 2.7 +/- 2.1%. After bolus feeding the tissue oxygenation index of the liver increased as expected. This indicates that near infrared spectroscopy is suitable for monitoring changes in tissue oxygenation of the liver in newborn infants.
Resumo:
OBJECTIVE: Insulin-like growth factor-I (IGF-I) is an important regulator of fetal growth and its bioavailability depends on insulin-like growth factor binding proteins (IGFBPs). Genes coding for IGF-I and IGFBP3 are polymorphic. We hypothesized that either amniotic fluid protein concentration at the beginning of the second trimester or genotype of one of these two genes could be predictive of abnormal fetal growth. STUDY DESIGN: Amniotic fluid samples (14-18 weeks of pregnancy) from 123 patients with appropriate for gestational age (AGA) fetuses, 39 patients with small for gestational age (SGA) fetuses and 34 patients with large for gestational age (LGA) were analyzed. Protein concentrations were evaluated by ELISA and gene polymorphisms by PCR. RESULTS: Amniotic fluid IGFBP3 concentrations were significantly higher in SGA compared to AGA group (P=0.030), and this was even more significant when adjusted to gestational age at the time of amniocentesis and other covariates (ANCOVA analysis: P=0.009). Genotypic distribution of IGF-I variable number of tandem repeats (VNTR) polymorphism was significantly different in SGA compared to AGA group (P=0.029). 19CA/20CA genotype frequency was threefold decreased in SGA compared to AGA group and the risk of SGA occurrence of this genotype was decreased accordingly: OR=0.289, 95%CI=0.1-0.9, P=0.032. Genotype distribution of IGFBP3(A-202C) polymorphism was similar in all three groups. CONCLUSIONS: High IGFBP3 concentrations in amniotic fluid at the beginning of the second trimester are associated with increased risks of SGA while 19CA/20CA genotype at IGF-I VNTR polymorphism is associated with reduced risks of SGA. Neither IGFBP3 concentrations, nor IGF-I/IGFBP3 polymorphisms are associated with modified risks of LGA.
Resumo:
Wounding in multicellular eukaryotes results in marked changes in gene expression that contribute to tissue defense and repair. Using a cDNA microarray technique, we analyzed the timing, dynamics, and regulation of the expression of 150 genes in mechanically wounded leaves of Arabidopsis. Temporal accumulation of a group of transcripts was correlated with the appearance of oxylipin signals of the jasmonate family. Analysis of the coronatine-insensitive coi1-1 Arabidopsis mutant that is also insensitive to jasmonate allowed us to identify a large number of COI1-dependent and COI1-independent wound-inducible genes. Water stress was found to contribute to the regulation of an unexpectedly large fraction of these genes. Comparing the results of mechanical wounding with damage by feeding larvae of the cabbage butterfly (Pieris rapae) resulted in very different transcript profiles. One gene was specifically induced by insect feeding but not by wounding; moreover, there was a relative lack of water stress-induced gene expression during insect feeding. These results help reveal a feeding strategy of P. rapae that may minimize the activation of a subset of water stress-inducible, defense-related genes.
Resumo:
Colostrum feeding and glucocorticoid administration affect glucose metabolism and insulin release in calves. We have tested the hypothesis that dexamethasone as well as colostrum feeding influence insulin-dependent glucose metabolism in neonatal calves using the euglycemic-hyperinsulinemic clamp technique. Newborn calves were fed either colostrum or a milk-based formula (n=14 per group) and in each feeding group, half of the calves were treated with dexamethasone (30 microg/[kg body weight per day]). Preprandial blood samples were taken on days 1, 2, and 4. On day 5, insulin was infused for 3h and plasma glucose concentrations were kept at 5 mmol/L+/-10%. Clamps were combined with [(13)C]-bicarbonate and [6,6-(2)H]-glucose infusions for 5.5h (i.e., from -150 to 180 min, relative to insulin infusion) to determine glucose turnover, glucose appearance rate (Ra), endogenous glucose production (eGP), and gluconeogenesis before and at the end of the clamp. After the clamp liver biopsies were taken to measure mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate carboxylase (PC). Dexamethasone increased plasma glucose, insulin, and glucagon concentrations in the pre-clamp period thus necessitating a reduction in the rate of glucose infusion to maintain euglycemia during the clamp. Glucose turnover and Ra increased during the clamp and were lower at the end of the clamp in dexamethasone-treated calves. Dexamethasone treatment did not affect basal gluconeogenesis or eGP. At the end of the clamp, dexamethasone reduced eGP and PC mRNA levels, whereas mitochondrial PEPCK mRNA levels increased. In conclusion, insulin increased glucose turnover and dexamethasone impaired insulin-dependent glucose metabolism, and this was independent of different feeding.
Resumo:
BACKGROUND AND AIMS: Critically ill patients with complicated evolution are frequently hypermetabolic, catabolic, and at risk of underfeeding. The study aimed at assessing the relationship between energy balance and outcome in critically ill patients. METHODS: Prospective observational study conducted in consecutive patients staying > or = 5 days in the surgical ICU of a University hospital. Demographic data, time to feeding, route, energy delivery, and outcome were recorded. Energy balance was calculated as energy delivery minus target. Data in means+/-SD, linear regressions between energy balance and outcome variables. RESULTS: Forty eight patients aged 57+/-16 years were investigated; complete data are available in 669 days. Mechanical ventilation lasted 11+/-8 days, ICU stay 15+/-9 was days, and 30-days mortality was 38%. Time to feeding was 3.1+/-2.2 days. Enteral nutrition was the most frequent route with 433 days. Mean daily energy delivery was 1090+/-930 kcal. Combining enteral and parenteral nutrition achieved highest energy delivery. Cumulated energy balance was between -12,600+/-10,520 kcal, and correlated with complications (P < 0.001), already after 1 week. CONCLUSION: Negative energy balances were correlated with increasing number of complications, particularly infections. Energy debt appears as a promising tool for nutritional follow-up, which should be further tested. Delaying initiation of nutritional support exposes the patients to energy deficits that cannot be compensated later on.
Resumo:
Analysis of TRIM5α and APOBEC3G genes suggests that these two restriction factors underwent strong positive selection throughout primate evolution. This pressure was possibly imposed by ancient exogenous retroviruses, of which endogenous retroviruses are remnants. Our study aims to assess in vitro the activity of these factors against ancient retroviruses by reconstructing their ancestral gag sequences, as well as the ancestral TRIM5α and APOBEC3G for primates. Based on evolutionary genomics approach, we reconstructed ancestors of the two largest families of human endogenous retroviruses (HERV), namely HERV-K and HERV-H, as well as primate ancestral TRIM5α and APOBEC3G variants. The oldest TRIM5α sequence was the catarhinne TRIM5α, common ancestor of Old World monkeys and hominoids, dated from 25 million years ago (mya). From the oldest, to the youngest, ancestral TRIM5α variants showed less restriction of HIV-1 in vitro [1]. Likewise three ancestral APOBEC3Gs sequences common to hominoids (18 mya), Old World monkeys, and catarhinnes (25 mya) were reconstructed. All ancestral APOBEC3G variants inhibited efficiently HIV-1Δvif in vitro, compared to modern APOBEC3Gs. The ability of Vif proteins (HIV-1, HIV-2, SIVmac and SIVagm) to counteract their activity tallied with the residue 128 on ancestral APOBEC3Gs. Moreover we are attempting to reconstruct older ancestral sequences of both restriction factors by using prosimian orthologue sequences. An infectious onemillion- years-old HERV-KCON previously reconstituted was shown to be resistant to modern TRIM5α and APOBEC3G [2]. Our ancestral TRIM5α and APOBEC3G variants were inactive against HERV-KCON. Besides we reconstructed chimeric HERV-K bearing ancestral capsids (up to 7 mya) that resulted in infectious viruses resistant to modern and ancestral TRIM5α. Likewise HERV-K viruses bearing ancestral nucleocapsids will be tested for ancestral and modern APOBEC3G restriction. In silico reconstruction and structural modeling of ancestral HERV-H capsids resulted in structures homologous to that of the gammaretrovirus MLV. Thus we are attempting to construct chimeric MLV virus bearing HERV-H ancestral capsids. These chimeric ancestral HERVs will be tested for infectivity and restriction by ancestral TRIM5α. Similarly chimeric MLV viruses bearing ancestral HERV-H nucleocapsids will be reconstructed and tested for APOBEC3G restriction.
Resumo:
AIMS: To characterize and compare the pharmacokinetic profiles of bromazepam, omeprazole and paracetamol when administered by the oral and nasogastric routes to the same healthy cohort of volunteers. METHODS: In a prospective, monocentric, randomized crossover study, eight healthy volunteers received the three drugs by the oral (OR) and nasogastric routes (NT). Sequential plasma samples were analyzed by high-performance liquid chromatography-UV, pharmacokinetic parameters (Cmax, AUC(0-infinity), t(1/2), k(e), tmax) were compared statistically, and Cmax, AUC(0-infinity) and t(max) were analyzed for bioequivalence. RESULTS: A statistically significant difference was seen in the AUC(0-infinity) of bromazepam, with nasogastric administration decreasing availability by about 25%: AUC(OR) = 2501 ng mL(-1) h; AUC(NT) = 1855 ng mL(-1) h (p < 0.05); ratio (geometric mean) = 0.74 [90% confidence interval (CI) 0.64-0.87]. However, this does not appear to be clinically relevant given the usual dosage range and the drug's half-life (approx. 30 h). A large interindividual variability in omeprazole parameters prevented any statistical conclusion from being drawn in terms of both modes of administration despite their similar average profile: AUC(OR) = 579 ng mL(-1) h; AUC(NT) = 587 ng mL(-1) h (p > 0.05); ratio (geometric mean) = 1.01 (90% CI 0.64-1.61). An extended study with a larger number of subjects may possibly provide clearer answers. The narrow 90% confidence limits of paracetamol indicate bioequivalence: AUC(OR) = 37 microg mL(-1) h; AUC(NT) = 41 microg mL(-1) h(p > 0.05); ratio (geometric mean) = 1.12 (90% CI 0.98-1.28). CONCLUSION: The results of this study show that the nasogastric route of administration does not appear to cause marked, clinically unsuitable alterations in the bioavailability of the tested drugs.
Resumo:
OBJECTIVE: Gaining postpyloric access in ventilated, sedated ICU patients usually requires time-consuming procedures such as endoscopy. Recently, a feeding tube has been introduced that migrates spontaneously into the jejunum in surgical patients. The study aimed at assessing the rate of migration of this tube in critically ill patients. DESIGN: Prospective descriptive trial. SETTING: Surgical ICU in a tertiary University Hospital. PATIENTS: One hundred and five consecutive surgical ICU patients requiring enteral feeding were enrolled, resulting in 128 feeding-tube placement attempts. METHODS: A self-propelled tube was used and followed up for 3 days: progression was assessed by daily contrast-injected X-ray. Severity of illness was assessed with SAPS II and organ failure assessed with SOFA score. RESULTS: The patients were aged 55+/-19 years (mean+/-SD) with SAPS II score of 45+/-18. Of the 128 tube placement attempts, 12 could not be placed in the stomach; eight were accidentally pulled out while in gastric position due to the necessity to avoid fixation during the progression phase. Among organ failures, respiratory failure predominated, followed by cardiovascular. By day 3, the postpyloric progression rate was 63/128 tubes (49%). There was no association between migration and age, or SAPS II score, but the progression rate was significantly poorer in patients with hemodynamic failure. Use of norepinephrine and morphine were negatively associated with tube progression (P<0.001), while abdominal surgery was not. In ten patients, jejunal tubes were placed by endoscopy. CONCLUSION: Self-propelled feeding tubes progressed from the stomach to the postpyloric position in 49% of patients, reducing the number of endoscopic placements: these tubes may facilitate enteral nutrient delivery in the ICU.