14 resultados para faulting
em Université de Lausanne, Switzerland
Resumo:
Deeply incised river networks are generally regarded as robust features that are not easily modified by erosion or tectonics. Although the reorganization of deeply incised drainage systems has been documented, the corresponding importance with regard to the overall landscape evolution of mountain ranges and the factors that permit such reorganizations are poorly understood. To address this problem, we have explored the rapid drainage reorganization that affected the Cahabon River in Guatemala during the Quaternary. Sediment-provenance analysis, field mapping, and electrical resistivity tomography (ERT) imaging are used to reconstruct the geometry of the valley before the river was captured. Dating of the abandoned valley sediments by the Be-10-Al-26 burial method and geomagnetic polarity analysis allow us to determine the age of the capture events and then to quantify several processes, such as the rate of tectonic deformation of the paleovalley, the rate of propagation of post-capture drainage reversal, and the rate at which canyons that formed at the capture sites have propagated along the paleovalley. Transtensional faulting started 1 to 3 million years ago, produced ground tilting and ground faulting along the Cahabon River, and thus generated differential uplift rate of 0.3 +/- 0.1 up to 0.7 +/- 0.4 mm . y(-1) along the river's course. The river responded to faulting by incising the areas of relative uplift and depositing a few tens of meters of sediment above the areas of relative subsidence. Then, the river experienced two captures and one avulsion between 700 ky and 100 ky. The captures breached high-standing ridges that separate the Cahabon River from its captors. Captures occurred at specific points where ridges are made permeable by fault damage zones and/or soluble rocks. Groundwater flow from the Cahabon River down to its captors likely increased the erosive power of the captors thus promoting focused erosion of the ridges. Valley-fill formation and capture occurred in close temporal succession, suggesting a genetic link between the two. We suggest that the aquifers accumulated within the valley-fills, increased the head along the subterraneous system connecting the Cahabon River to its captors, and promoted their development. Upon capture, the breached valley experienced widespread drainage reversal toward the capture sites. We attribute the generalized reversal to combined effects of groundwater sapping in the valley-fill, axial drainage obstruction by lateral fans, and tectonic tilting. Drainage reversal increased the size of the captured areas by a factor of 4 to 6. At the capture sites, 500 m deep canyons have been incised into the bedrock and are propagating upstream at a rate of 3 to 11 mm . y(-1) deepening at a rate of 0.7 to 1 5 mm . y(-1). At this rate, 1 to 2 million years will be necessary for headward erosion to completely erase the topographic expression of the paleovalley. It is concluded that the rapid reorganization of this drainage system was made possible by the way the river adjusted to the new tectonic strain field, which involved transient sedimentation along the river's course. If the river had escaped its early reorganization and had been given the time necessary to reach a new dynamic equilibrium, then the transient conditions that promoted capture would have vanished and its vulnerability to capture would have been strongly reduced.
Resumo:
The Northern Snake Range (Nevada) represents a spectacular example of a metamorphic core complex and exposes a complete section from the mylonitic footwall into the hanging wall of a fossil detachment system. Paired geochronological and stable isotopic data of mylonitic quartzite within the detachment footwall reveal that ductile deformation and infiltration of meteoric fluids occurred between 27 and 23 Ma. Ar-40/Ar-39 ages display complex recrystallization-cooling relationships but decrease systematically from 26.9 +/- 0.2 Ma at the top to 21.3 +/- 0.2 Ma at the bottom of footwall mylonite. Hydrogen isotope (delta D) values in white mica are very low (-150 to -145 %) within the top 80-90 m of detachment footwall, in contrast to values obtained from the deeper part of the section where values range from -77 to -64 %, suggesting that time-integrated interaction between rock and meteoric fluid was restricted to the uppermost part of the mylonitic footwall. Pervasive mica-water hydrogen isotope exchange is difficult to reconcile with models of Ar-40 loss during mylonitization solely by volume diffusion. Rather, we interpret the Ar-40/Ar-39 ages of white mica with low-delta D values to date syn-mylonitic hydrogen and argon isotope exchange, and we conclude that the hydrothermal system of the Northern Snake Range was active during late Oligocene (27-23 Ma) and has been exhumed by the combined effects of ductile strain, extensional detachment faulting, and erosion.
Resumo:
Tectonic observations in the Tethyan Himalaya reveal an important extensional event that succeeds the emplacement of SW-verging nappes. A major thrust, called the Kum Tso Thrust, has been backfolded and reactivated by normal faulting associated with this event. Measurements of the Kubler index, coupled with characterization of clay-size paragenesis show the effect of normal faulting on the regional metamorphic zonation and indicate that important extension zones, like the Sarchu-Lachung La Normal Fault Zone (SLFZ), exist within the Tethyan Himalaya. Diagenetic limestones from within the SLFZ are characterized by the occurrence of mixed-layered clay phases, kaolinite and an illite with a 001 peak >0.4 Delta degrees2 theta. This zone is bordered by two anchizonal-to-epizonal zones, where illite peaks become narrower. Further to the NE the successive appearance of biotite, chloritoid, garnet and garnet-staurolite-kyanite assemblapes testifies to an increase in metamorphic grade. The cataclastic samples from the normal faults contain kaolinite, smectite and a `broad' illite, indicating that extension occurs under diagenetic conditions.
Resumo:
Structural analysis of low-grade rocks highlights the allochthonous character of Mesozoic schists in southeastern Rhodope, Bulgaria. The deformation can be related to the Late Jurassic-Early Cretaceous thrusting and Tertiary detachment faulting. Petrologic and geochemical data show a volcanic arc origin of the greenschists and basaltic rocks. These results are interpreted as representing an island arc-accretionary complex related to the southward subduction of the Meliata-Maliac Ocean under the supra-subduction back-arc Vardar ocean/island arc system. This arc-trench system collided with the Rhodope in Late Jurassic times. (C) 2003 Academie des sciences. Published by Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
An efficient high-resolution (HR) three-dimensional (3D) seismic reflection system for small-scale targets in lacustrine settings was developed. In Lake Geneva, near the city of Lausanne, Switzerland, the offshore extension of a complex fault zone well mapped on land was chosen for testing our system. A preliminary two-dimensional seismic survey indicated structures that include a thin (<40 m) layer of subhorizontal Quaternary sediments that unconformably overlie south-east-dipping Tertiary Molasse beds and a major fault zone (Paudeze Fault Zone) that separates Plateau and Subalpine Molasse (SM) units. A 3D survey was conducted over this test site using a newly developed three-streamer system. It provided high-quality data with a penetration to depths of 300 m below the water bottom of non-aliased signal for dips up to 30degrees and with a maximum vertical resolution of 1.1 m. The data were subjected to a conventional 3D processing sequence that included post-stack time migration. Tests with 3D pre-stack depth migration showed that such techniques can be applied to HR seismic surveys. Delineation of several horizons and fault surfaces reveals the potential for small-scale geologic and tectonic interpretation in three dimensions. Five major seismic facies and their detailed 3D geometries can be distinguished. Three fault surfaces and the top of a molasse surface were mapped in 3D. Analysis of the geometry of these surfaces and their relative orientation suggests that pre-existing structures within the Plateau Molasse (PM) unit influenced later faulting between the Plateau and SM. In particular, a change in strike of the PM bed dip may indicate a fold formed by a regional stress regime, the orientation of which was different from the one responsible for the creation of the Paudeze Fault Zone. This structure might have later influenced the local stress regime and caused the curved shape of the Paudeze Fault in our surveyed area.
Resumo:
THESIS ABSTRACT : Low-temperature thermochronology relies on application of radioisotopic systems whose closure temperatures are below temperatures at which the dated phases are formed. In that sense, the results are interpreted as "cooling ages" in contrast to "formation ages". Owing to the low closure-temperatures, it is possible to reconstruct exhumation and cooling paths of rocks during their residence at shallow levels of the crust, i.e. within first ~10 km of depth. Processes occurring at these shallow depths such as final exhumation, faulting and relief formation are fundamental for evolution of the mountain belts. This thesis aims at reconstructing the tectono-thermal history of the Aar massif in the Central Swiss Alps by means of zircon (U-Th)/He, apatite (U-Th)/He and apatite fission track thermochronology. The strategy involved acquisition of a large number of samples from a wide range of elevations in the deeply incised Lötschen valley and a nearby NEAT tunnel. This unique location allowed to precisely constrain timing, amount and mechanisms of exhumation of the main orographic feature of the Central Alps, evaluate the role of topography on the thermochronological record and test the impact of hydrothermal activity. Samples were collected from altitudes ranging between 650 and 3930 m and were grouped into five vertical profiles on the surface and one horizontal in the tunnel. Where possible, all three radiometric systems were applied to each sample. Zircon (U-Th)/He ages range from 5.1 to 9.4 Ma and are generally positively correlated with altitude. Age-elevation plots reveal a distinct break in slope, which translates into exhumation rate increasing from ~0.4 to ~3 km/Ma at 6 Ma. This acceleration is independently confirmed by increased cooling rates on the order of 100°C/Ma constrained on the basis of age differences between the zircon (U-Th)/He and the remaining systems. Apatite fission track data also plot on a steep age-elevation curve indicating rapid exhumation until the end of the Miocene. The 6 Ma event is interpreted as reflecting tectonically driven uplift of the Aar massif. The late Miocene timing implies that the increase of precipitation in the Pliocene did not trigger rapid exhumation in the Aar massif. The Messinian salinity crisis in the Mediterranean could not directly intensify erosion of the Aar but associated erosional output from the entire Alps may have tapered the orogenic wedge and caused reactivation of thrusting in the Aar massif. The high exhumation rates in the Messinian were followed by a decrease to ~1.3 km/Ma as evidenced by ~8 km of exhumation during last 6 Ma. The slowing of exhumation is also apparent from apatite (U-Th)1He age-elevation data in the northern part of the Lötschen valley where they plot on a ~0.5km/Ma line and range from 2.4 to 6.4 Ma However, from the apatite (U-Th)/He and fission track data from the NEAT tunnel, there is an indication of a perturbation of the record. The apatite ages are youngest under the axis of the valley, in contrast to an expected pattern where they would be youngest in the deepest sections of the tunnel due to heat advection into ridges. The valley however, developed in relatively soft schists while the ridges are built of solid granitoids. In line with hydrological observations from the tunnel, we suggest that the relatively permeable rocks under the valley floor, served as conduits of geothermal fluids that caused reheating leading to partial Helium loss and fission track annealing in apatites. In consequence, apatite ages from the lowermost samples are too young and the calculated exhumation rates may underestimate true values. This study demonstrated that high-density sampling is indispensable to provide meaningful thermochronological data in the Alpine setting. The multi-system approach allows verifying plausibility of the data and highlighting sources of perturbation. RÉSUMÉ DE THÈSE : La thermochronologie de basse température dépend de l'utilisation de systèmes radiométriques dont la température de fermeture est nettement inférieure à la température de cristallisation du minéral. Les résultats obtenus sont par conséquent interprétés comme des âges de refroidissement qui diffèrent des âges de formation obtenus par le biais d'autres systèmes de datation. Grâce aux températures de refroidissement basses, il est aisé de reconstruire les chemins de refroidissement et d'exhumation des roches lors de leur résidence dans la croute superficielle (jusqu'à 10 km). Les processus qui entrent en jeu à ces faibles profondeurs tels que l'exhumation finale, la fracturation et le faillage ainsi que la formation du relief sont fondamentaux dans l'évolution des chaînes de montagne. Ces dernières années, il est devenu clair que l'enregistrement thermochronologique dans les orogènes peut être influencé par le relief et réinitialisé par l'advection de la chaleur liée à la circulation de fluides géothermaux après le refroidissement initial. L'objectif de cette thèse est de reconstruire l'histoire tectono-thermique du massif de l'Aar dans les Alpes suisses Centrales à l'aide de trois thermochronomètres; (U-Th)/He sur zircon, (U-Th)/He sur apatite et les traces de fission sur apatite. Afin d'atteindre cet objectif, nous avons récolté un grand nombre d'échantillons provenant de différentes altitudes dans la vallée fortement incisée de Lötschental ainsi que du tunnel de NEAT. Cette stratégie d'échantillonnage nous a permis de contraindre de manière précise la chronologie, les quantités et les mécanismes d'exhumation de cette zone des Alpes Centrales, d'évaluer le rôle de la topographie sur l'enregistrement thermochronologique et de tester l'impact de l'hydrothermalisme sur les géochronomètres. Les échantillons ont été prélevés à des altitudes comprises entre 650 et 3930m selon 5 profils verticaux en surface et un dans le tunnel. Quand cela à été possible, les trois systèmes radiométriques ont été appliqués aux échantillons. Les âges (U-Th)\He obtenus sur zircons sont compris entre 5.l et 9.4 Ma et sont corrélés de manière positive avec l'altitude. Les graphiques représentant l'âge et l'élévation montrent une nette rupture de la pente qui traduisent un accroissement de la vitesse d'exhumation de 0.4 à 3 km\Ma il y a 6 Ma. Cette accélération de l'exhumation est confirmée par les vitesses de refroidissement de l'ordre de 100°C\Ma obtenus à partir des différents âges sur zircons et à partir des autres systèmes géochronologiques. Les données obtenues par traces de fission sur apatite nous indiquent également une exhumation rapide jusqu'à la fin du Miocène. Nous interprétons cet évènement à 6 Ma comme étant lié à l'uplift tectonique du massif de l'Aar. Le fait que cet évènement soit tardi-miocène implique qu'une augmentation des précipitations au Pliocène n'a pas engendré cette exhumation rapide du massif de l'Aar. La crise Messinienne de la mer méditerranée n'a pas pu avoir une incidence directe sur l'érosion du massif de l'Aar mais l'érosion associée à ce phénomène à pu réduire le coin orogénique alpin et causer la réactivation des chevauchements du massif de l'Aar. L'exhumation rapide Miocène a été suivie pas une diminution des taux d'exhumation lors des derniers 6 Ma (jusqu'à 1.3 km\Ma). Cependant, les âges (U-Th)\He sur apatite ainsi que les traces de fission sur apatite des échantillons du tunnel enregistrent une perturbation de l'enregistrement décrit ci-dessus. Les âges obtenus sur les apatites sont sensiblement plus jeunes sous l'axe de la vallée en comparaison du profil d'âges attendus. En effet, on attendrait des âges plus jeunes sous les parties les plus profondes du tunnel à cause de l'advection de la chaleur dans les flancs de la vallée. La vallée est creusée dans des schistes alors que les flancs de celle-ci sont constitués de granitoïdes plus durs. En accord avec les observations hydrologiques du tunnel, nous suggérons que la perméabilité élevée des roches sous l'axe de la vallée à permi l'infiltration de fluides géothermaux qui a généré un réchauffement des roches. Ce réchauffement aurait donc induit une perte d'Hélium et un recuit des traces de fission dans les apatites. Ceci résulterait en un rajeunissement des âges apatite et en une sous-estimation des vitesses d'exhumation sous l'axe de la vallée. Cette étude à servi à démontrer la nécessité d'un échantillonnage fin et précis afin d'apporter des données thermochronologiques de qualité dans le contexte alpin. Cette approche multi-système nous a permi de contrôler la pertinence des données acquises ainsi que d'identifier les sources possibles d'erreurs lors d'études thermochronologiques. RÉSUMÉ LARGE PUBLIC Lors d'une orogenèse, les roches subissent un cycle comprenant une subduction, de la déformation, du métamorphisme et, finalement, un retour à la surface (ou exhumation). L'exhumation résulte de la déformation au sein de la zone de collision, menant à un raccourcissement et un apaissessement de l'édifice rocheux, qui se traduit par une remontée des roches, création d'une topographie et érosion. Puisque l'érosion agit comme un racloir sur la partie supérieure de l'édifice, des tentatives de corrélation entre les épisodes d'exhumation rapide et les périodes d'érosion intensive, dues aux changements climatiques, ont été effectuées. La connaissance de la chronologie et du lieu précis est d'une importance capitale pour une quelconque reconstruction de l'évolution d'une chaîne de montagne. Ces critères sont donnés par un retraçage des changements de la température de la roche en fonction du temps, nous donnant le taux de refroidissement. L'instant auquel les roches ont refroidit, passant une certaine température, est contraint par l'application de techniques de datation par radiométrie. Ces méthodes reposent sur la désintégration des isotopes radiogéniques, tels que l'uranium et le potassium, tous deux abondants dans les roches de la croûte terrestre. Les produits de cette désintégration ne sont pas retenus dans les minéraux hôtes jusqu'au moment du refroidissement de la roche sous une température appelée 'de fermeture' , spécifique à chaque système de datation. Par exemple, la désintégration radioactive des atomes d'uranium et de thorium produit des atomes d'hélium qui s'échappent d'un cristal de zircon à des températures supérieures à 200°C. En mesurant la teneur en uranium-parent, l'hélium accumulé et en connaissant le taux de désintégration, il est possible de calculer à quel moment la roche échantillonnée est passée sous la température de 200°C. Si le gradient géothermal est connu, les températures de fermeture peuvent être converties en profondeurs actuelles (p. ex. 200°C ≈ 7km), et le taux de refroidissement en taux d'exhumation. De plus, en datant par système radiométrique des échantillons espacés verticalement, il est possible de contraindre directement le taux d'exhumation de la section échantillonnée en observant les différences d'âges entre des échantillons voisins. Dans les Alpes suisses, le massif de l'Aar forme une structure orographique majeure. Avec des altitudes supérieures à 4000m et un relief spectaculaire de plus de 2000m, le massif domine la partie centrale de la chaîne de montagne. Les roches aujourd'hui exposées à la surface ont été enfouies à plus de 10 km de profond il y a 20 Ma, mais la topographie actuelle du massif de l'Aar semble surtout s'être développée par un soulèvement actif depuis quelques millions d'années, c'est-à-dire depuis le Néogène supérieur. Cette période comprend un changement climatique soudain ayant touché l'Europe il y a environ 5 Ma et qui a occasionné de fortes précipitations, entraînant certainement une augmentation de l'érosion et accélérant l'exhumation des Alpes. Dans cette étude, nous avons employé le système de datation (U-TH)/He sur zircon, dont la température de fermeture de 200°C est suffisamment basse pour caractériser l'exhumation du Néogène sup. /Pliocène. Les échantillons proviennent du Lötschental et du tunnel ferroviaire le plus profond du monde (NEAT) situé dans la partie ouest du massif de l'Aar. Considérés dans l'ensemble, ces échantillons se répartissent sur un dénivelé de 3000m et des âges de 5.1 à 9.4 Ma. Les échantillons d'altitude supérieure (et donc plus vieux) documentent un taux d'exhumation de 0.4 km/Ma jusqu'à il y a 6 Ma, alors que les échantillons situés les plus bas ont des âges similaires allant de 6 à 5.4 Ma, donnant un taux jusqu'à 3km /Ma. Ces données montrent une accélération dramatique de l'exhumation du massif de l'Aar il y a 6 Ma. L'exhumation miocène sup. du massif prédate donc le changement climatique Pliocène. Cependant, lors de la crise de salinité d'il y a 6-5.3 Ma (Messinien), le niveau de la mer Méditerranée est descendu de 3km. Un tel abaissement de la surface d'érosion peut avoir accéléré l'exhumation des Alpes, mais le bassin sud alpin était trop loin du massif de l'Aar pour influencer son érosion. Nous arrivons à la conclusion que la datation (U-Th)/He permet de contraindre précisément la chronologie et l'exhumation du massif de l'Aar. Concernant la dualité tectonique-érosion, nous suggérons que, dans le cas du massif de l'Aar, la tectonique prédomine.
Resumo:
The transpressional boundary between the Australian and Pacific plates in the central South Island of New Zealand comprises the Alpine Fault and a broad region of distributed strain concentrated in the Southern Alps but encompassing regions further to the east, including the northwest Canterbury Plains. Low to moderate levels of seismicity (e. g., 2 > M 5 events since 1974 and 2 > M 4.0 in 2009) and Holocene sediments offset or disrupted along rare exposed active fault segments are evidence for ongoing tectonism in the northwest plains, the surface topography of which is remarkably flat and even. Because the geology underlying the late Quaternary alluvial fan deposits that carpet most of the plains is not established, the detailed tectonic evolution of this region and the potential for larger earthquakes is only poorly understood. To address these issues, we have processed and interpreted high-resolution (2.5 m subsurface sampling interval) seismic data acquired along lines strategically located relative to extensive rock exposures to the north, west, and southwest and rare exposures to the east. Geological information provided by these rock exposures offer important constraints on the interpretation of the seismic data. The processed seismic reflection sections image a variably thick layer of generally undisturbed younger (i.e., < 24 ka) Quaternary alluvial sediments unconformably overlying an older (> 59 ka) Quaternary sedimentary sequence that shows evidence of moderate faulting and folding during and subsequent to deposition. These Quaternary units are in unconformable contact with Late Cretaceous-Tertiary interbedded sedimentary and volcanic rocks that are highly faulted, folded, and tilted. The lowest imaged unit is largely reflection-free Permian Triassic basement rocks. Quaternary-age deformation has affected all the rocks underlying the younger alluvial sediments, and there is evidence for ongoing deformation. Eight primary and numerous secondary faults as well as a major anticlinal fold are revealed on the seismic sections. Folded sedimentary and volcanic units are observed in the hanging walls and footwalls of most faults. Five of the primary faults represent plausible extensions of mapped faults, three of which are active. The major anticlinal fold is the probable continuation of known active structure. A magnitude 7.1 earthquake occurred on 4 September 2010 near the southeastern edge of our study area. This predominantly right-lateral strike-slip event and numerous aftershocks (ten with magnitudes >= 5 within one week of the main event) highlight the primary message of our paper: that the generally flat and topographically featureless Canterbury Plains is underlain by a network of active faults that have the potential to generate significant earthquakes.
Resumo:
Deformation of the Circum-Rhodope Belt Mesozoic (Middle Triassic to earliest Lower Cretaceous) low-grade schists underneath an arc-related ophiolitic magmatic suite and associated sedimentary successions in the eastern Rhodope-Thrace region occurred as a two-episode tectonic process: (i) Late Jurassic deformation of arc to margin units resulting from the eastern Rhodope-Evros arc-Rhodope terrane continental margin collision and accretion to that margin, and (ii) Middle Eocene deformation related to the Tertiary crustal extension and final collision resulting in the closure of the Vardar ocean south of the Rhodope terrane. The first deformational event D-1 is expressed by Late Jurassic NW-N vergent fold generations and the main and subsidiary planar-linear structures. Although overprinting, these structural elements depict uniform bulk north-directed thrust kinematics and are geometrically compatible with the increments of progressive deformation that develops in same greenschist-facies metamorphic grade. It followed the Early-Middle Jurassic magmatic evolution of the eastern Rhodope-Evros arc established on the upper plate of the southward subducting Maliac-Meliata oceanic lithosphere that established the Vardar Ocean in a supra-subduction back-arc setting. This first event resulted in the thrust-related tectonic emplacement of the Mesozoic schists in a supra-crustal level onto the Rhodope continental margin. This Late Jurassic-Early Cretaceous tectonic event related to N-vergent Balkan orogeny is well-constrained by geochronological data and traced at a regional-scale within distinct units of the Carpatho-Balkan Belt. Following subduction reversal towards the north whereby the Vardar Ocean was subducted beneath the Rhodope margin by latest Cretaceous times, the low-grade schists aquired a new position in the upper plate, and hence, the Mesozoic schists are lacking the Cretaceous S-directed tectono-metamorphic episode whose effects are widespread in the underlying high-grade basement. The subduction of the remnant Vardar Ocean located behind the colliding arc since the middle Cretaceous was responsible for its ultimate closure, Early Tertiary collision with the Pelagonian block and extension in the region caused the extensional collapse related to the second deformational event D-2. This extensional episode was experienced passively by the Mesozoic schists located in the hanging wall of the extensional detachments in Eocene times. It resulted in NE-SW oriented open folds representing corrugation antiforms of the extensional detachment surfaces, brittle faulting and burial history beneath thick Eocene sediments as indicated by 42.1-39.7 Ma Ar-40/Ar-39 mica plateau ages obtained in the study. The results provide structural constraints for the involvement components of Jurassic paleo-subduction zone in a Late Jurassic arc-continental margin collisional history that contributed to accretion-related crustal growth of the Rhodope terrane. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In the general discussion on the Variscan evolution of central Europe the pre-Mesozoic basement of the Alps is, in many cases, only included with hesitation. Relatively well-preserved from Alpine metamorphism, the Alpine External massifs can serve as an excellent example of evolution of the Variscan basement, including the earliest Gondwana-derived microcontinents with Cadomian relics. Testifying to the evolution at the Gondwana margin, at least since the Cambrian, such pieces took part in the birth of the Rheic Ocean. After the separation of Avalonia, the remaining Gondwana border was continuously transformed through crustal extension with contemporaneous separation of continental blocks composing future Pangea, but the opening of Palaeotethys had only a reduced significance since the Devonian. The Variscan evolution in the External domain is characterised by an early HP-evolution with subsequent granulitic decompression melts. During Visean crustal shortening, the areas of future formation of migmatites and intrusion of monzodioritic magmas in a general strike-slip regime, were probably in a lower plate situation, whereas the so called monometamorphic areas may have been in an upper plate position of the nappe pile. During the Latest Carboniferous, the emplacement of the youngest granites was associated with the strike-slip faulting and crustal extension at lower crustal levels, whereas, at the surface, detrital sediments accumulated in intramontaneous transtensional basins on a strongly eroded surface. To cite this article: J.R von Raumer et al., C. R. Geoscience 341 (2009). (C) 2008 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
The Late Triassic and Jurassic platform and the oceanic complexes in Evvoia, Greece, share a complementary plate-tectonic evolution. Shallow marine carbonate deposition responded to changing rates of subsidence and uplift, whilst the adjacent ocean underwent spreading, and then convergence, collision and finally obduction over the platform complex. Late Triassic ocean spreading correlated with platform subsidence and the formation of a long-persisting peritidal passive-margin platform. Incipient drowning occurred from the Sinemurian to the late Middle Jurassic. This subsidence correlated with intra-oceanic subduction and plate convergence that led to supra-subduction calc-alkaline magmatism and the formation of a primitive volcanic arc. During the Middle Jurassic, plate collision caused arc uplift above the carbonate compensation depth (CCD) in the oceanic realm, and related thrust-faulting, on the platform, led to sub-aerial exposures. Patch-reefs developed there during the Late Oxfordian to Kimmeridgian. Advanced oceanic nappe-loading caused platform drowning below the CCD during the Tithonian, which is documented by intercalations of reefal turbidites with non-carbonate radiolarites. Radiolarites and bypass-turbidites, consisting of siliciclastic greywacke, terminate the platform succession beneath the emplaced oceanic nappe during late Tithonian to Valanginian time.
Resumo:
The discovery of exhumed continental mantle and hyper-extended crust in present-day magma-poor rifted margins is at the origin of a paradigm shift within the research field of deep-water rifted margins. It opened new questions about the strain history of rifted margins and the nature and composition of sedimentary, crustal and mantle rocks in rifted margins. Thanks to the benefit of more than one century of work in the Alps and access to world-class outcrops preserving the primary relationships between sediments and crustal and mantle rocks from the fossil Alpine Tethys margins, it is possible to link the subsidence history and syn-rift sedimentary evolution with the strain distribution observed in the crust and mantle rocks exposed in the distal rifted margins. In this paper, we will focus on the transition from early to late rifting that is associated with considerable crustal thinning and a reorganization of the rift system. Crustal thinning is at the origin of a major change in the style of deformation from high-angle to low-angle normal faulting which controls basin-architecture, sedimentary sources and processes and the nature of basement rocks exhumed along the detachment faults in the distal margin. Stratigraphic and isotopic ages indicate that this major change occurred in late Sinemurian time, involving a shift of the syn-rift sedimentation toward the distal domain associated with a major reorganization of the crustal structure with exhumation of lower and middle crust. These changes may be triggered by mantle processes, as indicated by the infiltration of MOR-type magmas in the lithospheric mantle, and the uplift of the Brianconnais domain. Thinning and exhumation of the crust and lithosphere also resulted in the creation of new paleogeographic domains, the Proto Valais and Liguria-Piemonte domains. These basins show a complex, 3D temporal and spatial evolution that might have evolved, at least in the case of the Liguria-Piemonte basin, in the formation of an embryonic oceanic crust. The re-interpretation of the rift evolution and the architecture of the distal rifted margins in the Alps have important implications for the understanding of rifted margins worldwide, but also for the paleogeographic reconstruction of the Alpine domain and its subsequent Alpine compressional overprint.
Resumo:
The metamorphism of the carbonate rocks of the SE Zanskar Tibetan zone has been studied by `'illite crystallinity'' and calcite-dolomite thermometry. The epizonal Zangla unit overlies the anchizonal Chumik unit. This discontinuous inverse zonation demonstrates a late to post-metamorphic thrust of the first unit over the second. The studied area underwent a complex tectonic history: - The tectonic units were stacked from the NE to the SW, generating recumbent folds, NE dipping thrusts and the regional metamorphism. The compressive movements were active under lower temperature conditions, resulting in late thrusts that disturbed the metamorphic zonation. The discontinuous inverse metamorphic zonation dates from this phase. - A NE vergent backfolding phase occurred at lower temperature conditions. It caused the uplift of more metamorphic levels. - A late extensional phase is revealed by the presence of NE dipping low angle normal faults, and a major high angle fault, the Sarchu fault. The low angle normal faults locally run along earlier thrusts (composite tectonic contacts). Their throw has been sufficient to reset a normal stratigraphic superposition (young layers overlying old ones), but insufficient to erase the inverse metamorphic relationship. However, the combined action of backfolding and normal faulting can locally lessen, or even cancel, the inverse metamorphic superposition. After deduction of the normal fault translation, the vertical component of the original thrust displacement through stratigraphy is 400 m, which is a value far too low to explain the temperature difference between the two units. The horizontal component of displacement is therefore far more important than the vertical one. The regional distribution of metamorphism within the Zangla unit points out to an anchizonal front and an epizonal inner part. This fact is in agreement with nappe tectonics.
Resumo:
Résumé de la thèseLa fracturation des roches au cours de phases compressives ou extensives est un souvent évoquée pour expliquer la circulation de fluide au sein des roches cristallines. Dans le cadre de cette thèse, la circulation des fluides lors de l'exhumation tardive des Alpes a été étudiée en utilisant deux approches différentes: analyses structurales de la déformation fragile d'une part et analyses géochimiques des roches et des minéraux (isotopes stables, datations U/Pb, thermochronologie (U-Th)/He) d'autre part. Cette approche combinée a permis de mieux comprendre l'interaction existante entre les fluides métamorphiques et les fluides météoriques, ainsi que leur interaction avec les roches encaissantes. Le travail a été effectué dans la zone Pennique du Valais suisse.La première partie était focalisée sur la déformation fragile, le but étant de définir les différents types de déformations existantes et de déterminer l'âge relatif des différentes familles de failles. Dans la région d'étude, quatre domaines ont été distingués. Chacun d'eux comportent deux types de structures fragiles, certaines sont minéralisées alors que d'autre non. Au sein de chaque domaine, la direction principale des structures minéralisées correspond à l'orientation des accidents tectoniques majeurs de la région (Aosta- Ranzola Line au Sud, Rhône Line au Nord et Simplon Fault Zone à l'Est), alors que les structures non- minéralisées montrent des orientations plus variables. Ainsi, le premier type de structure est interprété comme résultant d'une dislocation tectonique alors que le deuxième type de structure résulterait d'une dislocation gravitaire locale. Il n'est néanmoins pas possible de classer chronologiquement la formation de ces deux types de structure ni d'attribuer un âge relatif aux changements d'orientation des contraintes majeures.La deuxième étude a été effectuée dans la région de la zone de faille du Simplon. Dans cette zone, la composition isotopique des minéraux ayant cristallisé à l'intérieur des fractures tardives permet de distinguer différents types de circulation de fluide. Les valeurs δ180 du quartz de la roche encaissante ainsi que ceux des veines tardives du bloque inférieur de la faille sont comparables. Ces valeurs indiquent un rééquilibrage et un tamponnage isotopique des fluides tardifs au contact de la roche encaissante lors de la fracturation de cette dernière et de la cristallisation des veines tardives. La même situation est observée dans la partie nord du bloque supérieur ainsi que dans sa partie sud. Ceci n'est néanmoins pas le cas pour la partie centrale du bloque supérieur où les valeurs isotopiques des minéraux dans les veines tardives sont approximativement 3 %o plus basses (avec des valeurs extrêmes négatifs), indiquant une contribution d'eau météorique aux fluides circulant dans les veines. Ces données suggèrent qu'une infiltration d'eau météorique a pu avoir lieu dans le bloque supérieur, où la fracturation des roches est plus intensive car le déplacement relatif le long de la faille y fut plus important, et la température maximale du métamorphisme plus basse. La troisième contribution traite de la géo-thermochronologie de la zone de contact entre la klippe de la Dent Blanche et la nappe de Tsaté. De petits zircons euhédraux ont été trouvés dans un plan de faille minéralisé (parallèle à la Faille du Rhône, voir première partie de l'étude), riche en hématite et quartz, de la zone d'étude. Les analyses U/Pb donnent des âges radiométriques autour de 270 - 280 Ma aux zircons extraits de la minéralisation ainsi que ceux extraits de la roche encaissante, ce qui correspond à l'âge de la nappe de la Dent Blanche et non celui de la nappe du Tsaté qui est elle-même classiquement interprétée comme une ophiolite Jurassique de l'Océan Liguro-Piémontais. Ces données suggèrent que les zircons contenus dans la veine ont été hérités de la roche encaissante. Les résultats (U-Th)/He indiquent un âge de refroidissement différent pour la roche encaissante (25.5 ± 2.0 Ma) que celui de la minéralisation (17.7 ±1.4 Ma). Le thermomètre isotopique quartz-hématite indique une température d'équilibre, et donc de mise en place de la minéralisation, d'environ 170 °C, température très proche de la température de -180 °C de fermeture du zircon pour le système (U-Th)/He. Ceci suggère que l'âge de refroidissement des zircons de la minéralisation correspond aussi à l'âge de formation de la faille.Thesis abstractFluid circulation in fractured rocks is a common process in geology, and it is generally the consequence of faulting and fracturing during both tectonic compression and extension. This thesis is focused on fluid circulation during late stages of the Alpine exhumation. After a structural analysis of the late brittle deformation of the studied samples, several analytical methods (stable isotope investigations, U/Pb radiometric dating, (U-Th)/He thermochronology) have been applied to understand the interaction of metamorphic and meteoric fluids with one another as well as with the host rock. This thesis is articulated around three study directions. All studies were conducted in the Penninic Zone of the Valais, Switzerland. The first study deals with late, brittle deformation and focuses on the different deformation styles and on the relative age of the different families of fractures. In order to do this, late brittle structures observed in four different domains have been subdivided as a function of the existence (or not) and type of mineralization. Comparisons between mineralized and non-mineralized strike directions for all four domains show that mineralized structures follow the strike orientation of major tectonic movements indicated in the Penninic Zone of the Valais (Aosta-Ranzola Line to the S, Rhône Line to the Ν and Simplon Fault Zone to the E), whereas non-mineralized fractures have a more variable strike orientation. This difference could be interpreted as indicative of tectonic-related faulting (mineralized structures) vs. local, collapse-related faulting (non-mineralized fractures), but it is not strong enough to indicate a relative age of the late brittle structures, and/or a change in the orientation of the strain field in post-Miocene times. The second studied area is focused on the Simplon Fault Zone (SFZ). Stable isotope analyses of minerals filling these late fractures indicate that there are two different fluid circulation systems in the footwall and hanging wall of the SFZ. In the footwall, δ180 values of quartz from both the host rock and the late veins range from +10 %o to +12 %o. This is consistent with buffering of circulating fluids by the host rock during fracturing and vein precipitation. In the hanging wall, δΙ80 values for quartz crystals from the host rock and the late veins are similar in both the northern and southern parts of the detachment that are both affected by the same degree of metamorphism (greenschist to the Ν and amphibolite to the S). This is not the case in the central part of the SFZ, where there is a jump from amphibolite facies in the footwall to greenschist facies in the hanging wall. δ,80 values for quartz from the hanging wall late veins are approximately 3.0 %o lower (down to negative values in some cases) than the values observed in the footwall These data suggest that infiltration of meteoric water may have occurred in the most fractured parts of the hanging wall, where relative displacement on the SFZ was the greatest and the peak temperature lower. In the less fractured footwall the δ180 values reflect a host rock-buffered system.The third study is focused on geo-thermochronology at the contact between the Dent Blanche nappe and the Tsaté nappe where small, euhedral zircons were found in a hematite- and quartz-rich mineralization on a late normal fault plane parallel to the Rhône Line (see first part of the study). U/Pb analysis indicates that the zircons - both in the late mineralization and in the host rock - have absolute radiometric ages clustering around 270 - 280 Ma, which is the accepted age for intrusive rocks from the Austroalpine Dent Blanche units but not for the Tsaté nappe. The latter is classically interpreted as an ophiolitic remnant of the Jurassic Liguro-Piemontais Ocean. U/Pb analyses suggest that zircons in late mineralization are all inherited from the host rock; however, results of (U-Th)/He analyses indicate that cooling ages for the host rocks are different to the cooling ages for the zircons in late mineralization. Indeed, the calculated cooling age for the Arolla gneiss is 25.5 ± 2.0 Ma, whilst the cooling age for the associated mineralized fault plane is 17.7 ±1.4 Ma. Oxygen stable isotope fractionation between quartz and hematite in the same late mineralization corresponds to temperatures of about 170 °C. The proximity of the calculated emplacement temperature for the mineralization and the lower accepted closure temperature for zircon in the (U-Th)/He system (-180 °C) imply that the age of 17.7 ± 1.4 Ma can also be interpreted as the formation age of this late brittle fault.Résumé grand publicLa circulation des fluides dans les roches fracturées est typique de nombreux processus géologiques, et très souvent est la conséquence de la fracturation des roches. Cette thèse aborde la question de la circulation des fluides pendant les dernières phases du soulèvement des Alpes. Après une analyse structurale de la fracturation directement sur le terrain, plusieurs méthodes géochimiques ont été appliquées pour comprendre l'interaction entre les différents fluides circulants, et avec leur propre roche mère. L'étude, concentrée sur trois directions principales, a été conduite dans la zone Pennique du Valais suisse. La première partie traite de la déformation cassante dans le secteur cité. L'analyse détaillée des fractures a permis de les subdiviser en structures minéralisées et non-minéralisées, sur quatre domaines différents. La comparaison entre les directions des structures minéralisées et non-minéralisées a permis de montrer que les premières suivent l'orientation des accidents tectoniques majeurs de la région, alors que les structures non- minéralisées ont une orientation plus variable. Cette différence pourrait être interprétée comme indication d'une dislocation tectonique (structures minéralisées) contre une dislocation gravitaire locale (structures non-minéralisées), mais elle n'est pas assez forte pour indiquer un âge relatif des structures tardives et/ou un changement de l'orientation des contraintes après -20 Ma vers le présent.A partir de ces observations, la deuxième étude est concentrée dans la région de la faille du Simplon. Les analyses géochimiques sur les minéraux remplissant les structures tardives indiquent qu'il y a deux différents systèmes de circulation des fluides dans les deux parties (toit et mur) de la faille. Dans le mur, les valeurs isotopiques des minéraux cristallisés à partir d'un fluide tardif sont les mêmes de ceux de la roche mère, donc il y a eu rééquilibration chimique entre fluide et roche pendant la fracturation de cette dernière et la précipitation des minéraux. Dans le toit, les valeurs isotopiques dans la roche mère et dans les minéraux des veines tardives sont comparables dans les parties Ν et S de la faille, où les roches du toit et du mur ont atteint une température maximale - pendant phase prograde de la formation des Alpes - comparable. Au contraire, dans la partie centrale, où le mur a atteint des températures maximales plus élevées par rapport au toit, les valeurs géochimiques des minéralisations tardives du toit sont parfois plus basses que les valeurs observées dans le mur. Ces données suggèrent que l'infiltration de l'eau de surface aurait pu se produire dans la partie plus fracturée du toit, où le déplacement relatif le long de la faille était majeur et les températures maximales mineures. Au contraire, les données géochimiques du mur de la partie centrale indiquent un système isotopique équilibré par la roche mère.La troisième partie de ce travail se base sur l'étude géochimique intégrée des isotopes stables d'Oxygène et radioactifs du Plomb, Uranium, Thorium et Hélium, auprès d'une faille normale minéralisée et des roches de la région à cheval entre deux nappes, la nappe de la Dent Blanche et la nappe de Tsaté. Ici, des petits zircons ont été trouvés dans la minéralisation citée, riche en hématite et quartz. L'analyse radiométrique Uranium/Plomb a montré que les zircons dans la minéralisation et dans les roches autour ont des âges comparables (autour 280 Ma). Cela signifie que les zircons dans la minéralisation tardive ont été hérités de la roche mère pendant la fracturation et la circulation des fluides tardives. De l'autre coté, les résultats des analyses Uranium-Thorium/Hélium indiquent que les âges de refroidissement pour les roches mères sont différents comparés aux âges de refroidissement pour les zircons dans la minéralisation tardive: ces derniers sont plus jeunes d'environ 8 Ma (autour 25 Ma et autour 17 Ma respectivement). Les analyses des isotopes de l'oxygène sur quartz et hématite dans la même minéralisation donnent une température de mise en place de cette dernière d'environ 170° C. La température de fermeture du système chimique des zircons dans le système (Uranium-Thorium)/Hélium est d'environ 180 °C: la proximité de ces deux températures implique que l'âge de refroidissement de la minéralisation tardive peut également être interprété comme âge de formation de la faille.
Resumo:
RESUME: Une zone tectonique large et complexe, connue sous le nom de ligne des Centovalli, traverse le secteur des Alpes Centrales compris entre Domodossola et Locarno. Cette région, formée par le Val Vigezzo et la vallée des Centovalli, constitue la terminaison méridionale du dôme Lepontin et représente une portion de la zone des racines des nappes alpines. Elle fait partie dune grande et complexe zone de cisaillement, en partie associée à des phénomènes hydrothermaux dâge alpin (<20 Ma), qui comprend le système tectonique Insubrien et celui du Simplon. Le Val Vigezzo et les Centovalli constituent un vrai carrefour entre les principaux accidents tectoniques des Alpes ainsi qu'une zone de juxtaposition du socle Sudalpin avec la zone des racines de lAustroalpin et du Pennique. Les phases de déformation et les structures géologiques qui peuvent être étudiées s'étalent sur une période comprise entre environ 35 Ma et l'actuel. Létude détaillée de terrain a mis en évidence la présence de nombreuses roches et structures de déformation de type ductile et cassant tels que des mylonites, des cataclasites, des pseudotachylites, des kakirites, des failles minéralisées, des gouges de faille et des plis. Sur le terrain on a pu distinguer au moins quatre générations de plis liés aux différentes phases de déformation. Le nombre et la complexité de ces structures indiquent une histoire très compliquée, selon plusieurs étapes distinctes, parfois liées, voire même superposées. Une partie de ces structures de déformation affectent aussi les dépôts sédimentaires dâge quaternaire, notamment des limons et des sables lacustres. Ces sédiments constituent les restes d'un bassin lacustre attribué à l'époque interglaciaire Riss/Würm (éemien, 67.000-120.000 ans) et ils affleurent dans la partie centrale de la zone étudiée, à l'Est de la plaine de Santa Maria Maggiore. Ces sédiments montrent en leur sein toute une série de structures de déformation tels que des plans de faille inverses, des structures conjuguées de raccourcissement et des véritables plis. Ces failles et ces plis représenteraient les évidences de surface dune déformation probablement active en époque quaternaire. Une autre formation rocheuse a retenu tout notre attention; il s'agit d'un corps de brèches péridotitiques monogéniques qui affleure en discontinuité le long du versant méridional et le long du fond de la vallée Vigezzo sur environ 20 km. Ces brèches se posent indifféremment sur le socle (unités Finero, Orselina) ou sur les sédiments lacustres. Elles sont traversées par des plans de failles qui développent des véritables stries de faille et des gouges de faille; lorientation de ces plans est la même que celle affectant les failles à gouges du socle. La genèse de cette brèche est liée à l'altération et au modelage glacier (rock-glaciers) d'une brèche tectonique originelle qui borde la partie externe du Corps de Finero. Les structures de déformation de cette brèche, pareillement à celles des sédiments lacustres, ont été considérées comme les évidences de surface d'une tectonique quaternaire active dans la région. La dernière phase de déformation cassante qui affecte cette région peut donc être considérée comme active en époque quaternaire. Une vue densemble de la région étudiée nous permet de reconnaître à léchelle régionale une zone de cisaillement complexe orientée E-W, parallèlement à laxe de la vallée Centovalli-Val Vigezzo. Les données de terrain, indiquent que cette zone de cisaillement débute sous conditions ductiles et évolue en plusieurs étapes jusquà des conditions de failles cassantes de surface. La reconstruction de l'évolution géodynamique de la région a permis de définir trois étapes distinctes qui marquent le passage, de ce secteur de socle cristallin, de conditions P-T profondes à des conditions de surface. Dans ce contexte, on a reconnu trois phases principales de déformation à léchelle régionale qui caractérisent ces trois étapes. La phase la plus ancienne est constituée par des mylonites en faciès amphibolite, associées à des mouvements de cisaillement dextre, qui sont ensuite remplacés par des mylonites en faciès schistes verts et des plis rétrovergentes liés au rétrocharriage des nappes alpines. Une deuxième étape est identifiée par le développement dune phase hydrothermale liée à un système de failles extensives et décrochantes dextres à direction principale E-W, NE-SW et NW-SE. Leur caractérisation minéralogique a permis la mise en évidence des phases cristallines de néoformation liées à cet événement constituées par : K-feldspath (microcline), chlorites (Fe+Mg), épidotes, prehnite, zéolites (laumontite), sphène, calcite. Dans ce contexte, pour obtenir une meilleure caractérisation de cet événement hydrothermal on a utilisé des géothermomètres sur chlorites, sensible aussi à la pression et a la a(H2O), qui ont donné des valeurs descendantes comprises entre 450-200°C. Les derniers mouvements sont mis en évidence par le développement dune série de plans majeurs de failles à gouge, qui forment une structure en sigmoïdes dépaisseur kilométrique reconnaissable à léchelle de la vallée et caractérisée par des mouvements transpressifs avec une composante décrochante dextre toujours importante. Cette phase de déformation forme un système conjugué de failles avec direction moyenne E-W qui coupent la zone des racines des nappes alpines, la zone du Canavese et le corps ultramafique de Finero. Ce système se déroule de manière subparallèle à l'axe de la vallée le long de plusieurs dizaines de kilomètres. Une analyse complète et détaillée des gouges de faille par XRD a montré que la fraction argileuse (<2 µm) de ces gouges contient une partie de néoformation très importante constituée par, des illites, des chlorites et des interstratifiés de type illite/smectite ou chlorite/smectite. Des datations avec méthode K-Ar sur ces illites ont donné des valeurs comprises entre 12 et 4 Ma qui représentent l'âge de cette dernière déformation cassante. L'application de la méthode de la cristallinité de l'illite (C.I.) a permis d'évaluer les conditions thermiques qui caractérisent le déroulement de cette dernière phase tectonique qui se produit sous conditions de température caractéristiques de l'anchizone et de la diagenèse. L'ensemble des structures de déformation qu'on vient de décrire s'insère parfaitement dans le contexte de convergence oblique entre la plaque adriatique et celle européenne qui à produit l'orogène alpin. On peut considérer les structures tectoniques du Val Vigezzo-Centovalli comme l'expression d'une zone majeure de cisaillement "Simplo-Insubrienne". L'empilement structural et les structures tectoniques affleurantes dans la région sont le résultat de l'interaction entre un régime tectonique transpressif et un régime transtensif. Ces deux champs de tension sont antagonistes entre eux mais sont reliés, de toute façon, à une seule phase décrochante dextre principale, due à une convergence oblique entre deux plaques. À l'échelle de l'évolution géodynamique on peut distinguer différentes étapes au cours desquelles les structures de ces deux régimes tectoniques interagissent en manière différente. En accord avec les données géophysiques et les reconstructions paléodynamiques prises dans la littérature on considère que la ligne Rhône-Simplon-Centovalli représente l'évidence de surface de la suture majeure profonde entre la plaque Adriatique et celle Européenne. Les vitesses de soulèvement qui ont été calculées dans cette étude pour cette région des Alpes donnent une valeur moyenne de 0.8 mm/a qui est tout à fait comparable avec les données proposées par la littérature sur cette zone. La zone Val Vigezzo-Centovalli peut être donc considérée comme un carrefour géologique où se croisent différentes phases tectoniques qui représentent les évidences de surface d'une suture profonde majeure entre deux plaques dans un contexte de collision continentale. ABSTRACT: A wide and complex tectonic zone known as Centovalli line, crosses the Central Alps sector between Domodossola and Locarno. This area, formed by the Vigezzo Valley and Centovalli valley, constitutes the southernmost termination of the Lepontin dome and represents a portion of the alpine nappes root zone. It belongs to a large and complex shear-zone, partly associated with hydrothermal phenomena of alpine age (<20 My), which includes the Insubric Line and the Simplon fault zone. Vigezzo Valley and Centovalli constitute a real crossroads between the mains alpines tectonics lines as well as a zone of juxtaposition of the Southalpine basement with the Austroalpin and Pennique root zone. The deformation phases and the geological structures that can be studied between approximately 35 My and the present. The detailed field study showed the presence of many brittle and ductile deformation structures and fault rocks such as mylonites, cataclasites, pseudotachylites, kakirites, mineralized faults, fault gouges and folds. In the field we could distinguish at least four folds generations related to the various deformation phases. The number and the complexity of these structures indicate a very complicated history, comprising several different stages, that sometimes are related and even superimposed. Part of these deformation structures affect also the sedimentary deposits of quaternary age, in particular the silts and sands lake deposit. These sediments constitute the remainders of a lake basin ascribed to the interglacial Riss/Würm (Eemien, 67.000-120.000 years) and outcroping in the central part of the studied area, in the Eastern part of Santa Maria Maggiore plain. These sediments show a whole series of deformation structures such as inverse fault planes, combined shortening structures and true folds. These faults and folds would represent the surface evidence of a probably active tectonic deformation in quaternary time. Another rock formation attracted all our attention. It is a body of monogenic peridotite breccia which outcrops in discontinuity along the southernmost slope and the bottom of the Vigezzo valley on approximately 20 km. This breccia lies indifferently on the basement (Finero and Orselina units) or on the lake sediments. They are crossed by fault planes which developed slikenside and fault gouges whose orientation is the same of the faults gouges in the alpine basement. This breccia results from the weathering and the surface modelling of an original tectonic breccia which borders the external part of Finero peridotite body. This breccia deformation structures, like those of the lake sediments, were regarded as the surface interaction of active quaternary tectonics in the area. So the last brittle deformation phases which affects this area seems to be actives in quaternary time. Theoverall picture of the studied area on a regional scale enables us to point out a complex shear-zone directed E-W, parallel to the axis of the Centovalli and Vigezzo Valley. The field analysis indicates that this shear-zone began under ductile conditions and evolved in several stages to brittle faulting under surface conditions. The analysis of the geodynamic evolution of the area allows to define three different stages which mark the transition of this alpine basement root zone, from deep P-T conditions to P-T surface conditions. In this context on regional scale three principal deformation phases, which characterize these three stages can be distinguished. The oldest phase consisted of the amphibolitie facies mylonites, associated to dextral strikeslip movements. They are then replaced by green-schists facies mylonites and backfolds related to the backthrusting of the alpines nappes. A second episode is caracterized by the development of an hydrothermal phase bound to an extensive fault and dextral strike-slip fault system, with E-W, NW-SE and SE-NW principal directionsThe principal neoformed mineral phases related to this event are: K-feldspar (microcline), chlorites (Fe+Mg), epidotes prehnite, zéolites (laumontite), sphene and calcite. In this context, to obtain a better characterization of this hydrothermal event, we have used an chlorite geothermometer, sensitive also to the pressure and has the a(H2O), which gave downward values ranging between 450-200°C. The last movements are caracterized by the development of important gouge fault plans, which form a sigmoid structure of kilometric thickness which is recognizable at the valley scale, and is characterized by transpressive movements always with a significant dextral strike-slip component. This deformation phase forms a combined faults system with an average E-W direction, which cuts trough the alpine root zone, the Canavese zone and the Finero ultramafic body. This fault system takes place subparallel to the axis of the valley over several tens of kilometers. A complete and detailed XRD analysis of the gouges fault showed that the clay fraction (<2µm) contains a very significant neo-formation of illite, chlorites and mixed layered clays such as illite/smectite or chlorite/smectite. The K-Ar datings of the illite fraction <2µm gave values ranging between 12 and 4 My and the illite fraction <0.2µm gave more recents values until to 2,4-0 My.This values represent the age of this last brittle deformation. The application of the illite crystallinity method (C.I.) allowed evaluating the thermal conditions which characterize this tectonic phase that occured under temperature conditions of the anchizone and diagenesis. The whole set of deformation structures which we just described, perfectly fit the context of oblique convergence between the Adriatic and the European plate that produced the alpine orogen. We can regard the Vigezzo valley and Centovalli tectonic structures as the expression of a major "Simplo-Insubric" shear-zone. Structural stacking and tectonic structures that outcrop in the studied area, are the result of the interaction between a transpressive and a transtensve tectonic phases. These two tension fields are antagonistic but they are also connected, in any event, with only one principal dextral strike-slip movement, caused by an oblique convergence between two plates. On the geodynamic evolution scale we can distinguish various stages during which these two tectonic structures fields interact in various ways. In agreement with the geophysical data and the paleodynamic recostructions taken in the literature we considers that the Rhone-Simplon-Centovalli line are the surface feature of the major collision between the Adriatique and the European plate at depth. The uplift speeds we calculated in this study for this Alpine area give an average value of 0.8 mm/a, which is in good agreement with the data suggested by the literature on this zone. TheVigezzo Valley and Centovalli zone can therefore be regarded as a geological crossroad where various tectonic phases are superimposed. They represent the evidences of a major and deeper suture between two plates in a continental collision context.