222 resultados para expressions of interest
em Université de Lausanne, Switzerland
Formulation and Implementation of Air Quality Control Pogrammes : Patterns of Interest Consideration
Resumo:
This article investigates some central aspects of the relationships between programme structure and implementation of sulphur dioxide air quality control policies. Previous implementation research, primarily adopting American approaches, has neglected the connections between the processes of programme formulation and implementation. 'Programme', as the key variable in implementation studies, has been defined too narrowly. On the basis of theoretical and conceptual reflections and provisional empirical results from studies in France, Italy, England, and the Federal Republic of Germany, the authors demonstrate that an integral process analysis using a more extended programme concept is necessary if patterns of interest recognition in policies are to be discovered. Otherwise, the still important question of critical social science cannot be answered, namely, what is the impact of special interests upon implementation processes.
Resumo:
Neuropathic pain is a common form of chronic pain, and is unsuccessfully alleviated by usual medications. Mounting evidence strongly point at non-neuronal glial cells in the spinal cord as key actors behind the persistence of pain. In particular, a change in the astrocytic capacity to regulate extracellular concentrations of neurotransmitters might account for the strengthened spinal nociceptive neurotransmission. Therefore, we investigated whether spinal expressions of GABA (GAT) and glutamate (EAAT) transporters were affected in the spared nerve injury (SNI) rat model of neuropathic pain. SNI was induced in male Sprague-Dawley rats by a unilateral section of tibial and common peroneal branches of the sciatic nerve, leaving the sural branch untouched. Western-blot analysis was performed to study the expression of GAT-1 and GAT-3 as well as EAAT-1 and EAAT-2, the main astrocytic GABA and glutamate transporters respectively. Seven days post-surgery, a significant increase in GAT-1, GAT-3 and EAAT-1 expressions is detected in both ipsilateral and contralateral sides of lumbar spinal cord in comparison to sham animals. No change in EAAT-2 signal could be detected. Furthermore, the astrocytic reaction parallels the glutamate and GABA transporters changes as we found an increased GFAP expression compared to the sham condition, in both spinal sides. Together, our results indicate that modifications in GABA and glutamate transport may occur along with SNI-associated painful neuropathy and identify spinal neurotransmitter reuptake machinery as a putative pharmacological target in neuropathic pain.
Resumo:
The present research deals with the review of the analysis and modeling of Swiss franc interest rate curves (IRC) by using unsupervised (SOM, Gaussian Mixtures) and supervised machine (MLP) learning algorithms. IRC are considered as objects embedded into different feature spaces: maturities; maturity-date, parameters of Nelson-Siegel model (NSM). Analysis of NSM parameters and their temporal and clustering structures helps to understand the relevance of model and its potential use for the forecasting. Mapping of IRC in a maturity-date feature space is presented and analyzed for the visualization and forecasting purposes.
Resumo:
This work consists of three essays investigating the ability of structural macroeconomic models to price zero coupon U.S. government bonds. 1. A small scale 3 factor DSGE model implying constant term premium is able to provide reasonable a fit for the term structure only at the expense of the persistence parameters of the structural shocks. The test of the structural model against one that has constant but unrestricted prices of risk parameters shows that the exogenous prices of risk-model is only weakly preferred. We provide an MLE based variance-covariance matrix of the Metropolis Proposal Density that improves convergence speeds in MCMC chains. 2. Affine in observable macro-variables, prices of risk specification is excessively flexible and provides term-structure fit without significantly altering the structural parameters. The exogenous component of the SDF is separating the macro part of the model from the term structure and the good term structure fit has as a driving force an extremely volatile SDF and an implied average short rate that is inexplicable. We conclude that the no arbitrage restrictions do not suffice to temper the SDF, thus there is need for more restrictions. We introduce a penalty-function methodology that proves useful in showing that affine prices of risk specifications are able to reconcile stable macro-dynamics with good term structure fit and a plausible SDF. 3. The level factor is reproduced most importantly by the preference shock to which it is strongly and positively related but technology and monetary shocks, with negative loadings, are also contributing to its replication. The slope factor is only related to the monetary policy shocks and it is poorly explained. We find that there are gains in in- and out-of-sample forecast of consumption and inflation if term structure information is used in a time varying hybrid prices of risk setting. In-sample yield forecast are better in models with non-stationary shocks for the period 1982-1988. After this period, time varying market price of risk models provide better in-sample forecasts. For the period 2005-2008, out of sample forecast of consumption and inflation are better if term structure information is incorporated in the DSGE model but yields are better forecasted by a pure macro DSGE model.
Resumo:
PURPOSE: Prostate cancer (PCa) diagnosis relies on clinical suspicion leading to systematic transrectal ultrasound-guided biopsy (TRUSGB). Multiparametric magnetic resonance imaging (mpMRI) allows for targeted biopsy of suspicious areas of the prostate instead of random 12-core biopsy. This method has been shown to be more accurate in detecting significant PCa. However, the precise spatial accuracy of cognitive targeting is unknown. METHODS: Consecutive patients undergoing mpMRI-targeted TRUSGB with cognitive registration (MRTB-COG) followed by robot-assisted radical prostatectomy were included in the present analysis. The regions of interest (ROIs) involved by the index lesion reported on mpMRI were subsequently targeted by two experienced urologists using the cognitive approach. The 27 ROIs were used as spatial reference. Mapping on radical prostatectomy specimen was used as reference to determine true-positive mpMRI findings. Per core correlation analysis was performed. RESULTS: Forty patients were included. Overall, 40 index lesions involving 137 ROIs (mean ROIs per index lesion 3.43) were identified on MRI. After correlating these findings with final pathology, 117 ROIs (85 %) were considered as true-positive lesions. A total of 102 biopsy cores directed toward such true-positive ROIs were available for final analysis. Cognitive targeted biopsy hit the target in 82 % of the cases (84/102). The only identified risk factor for missing the target was an anterior situated ROI (p = 0.01). CONCLUSION: In experienced hands, cognitive MRTB-COG allows for an accuracy of 82 % in hitting the correct target, given that it is a true-positive lesion. Anterior tumors are less likely to be successfully targeted.
Resumo:
To date, state-of-the-art seismic material parameter estimates from multi-component sea-bed seismic data are based on the assumption that the sea-bed consists of a fully elastic half-space. In reality, however, the shallow sea-bed generally consists of soft, unconsolidated sediments that are characterized by strong to very strong seismic attenuation. To explore the potential implications, we apply a state-of-the-art elastic decomposition algorithm to synthetic data for a range of canonical sea-bed models consisting of a viscoelastic half-space of varying attenuation. We find that in the presence of strong seismic attenuation, as quantified by Q-values of 10 or less, significant errors arise in the conventional elastic estimation of seismic properties. Tests on synthetic data indicate that these errors can be largely avoided by accounting for the inherent attenuation of the seafloor when estimating the seismic parameters. This can be achieved by replacing the real-valued expressions for the elastic moduli in the governing equations in the parameter estimation by their complex-valued viscoelastic equivalents. The practical application of our parameter procedure yields realistic estimates of the elastic seismic material properties of the shallow sea-bed, while the corresponding Q-estimates seem to be biased towards too low values, particularly for S-waves. Given that the estimation of inelastic material parameters is notoriously difficult, particularly in the immediate vicinity of the sea-bed, this is expected to be of interest and importance for civil and ocean engineering purposes.
Resumo:
Huntington's disease is an inherited neurodegenerative disease that causes motor, cognitive and psychiatric impairment, including an early decline in ability to recognize emotional states in others. The pathophysiology underlying the earliest manifestations of the disease is not fully understood; the objective of our study was to clarify this. We used functional magnetic resonance imaging to investigate changes in brain mechanisms of emotion recognition in pre-manifest carriers of the abnormal Huntington's disease gene (subjects with pre-manifest Huntington's disease): 16 subjects with pre-manifest Huntington's disease and 14 control subjects underwent 1.5 tesla magnetic resonance scanning while viewing pictures of facial expressions from the Ekman and Friesen series. Disgust, anger and happiness were chosen as emotions of interest. Disgust is the emotion in which recognition deficits have most commonly been detected in Huntington's disease; anger is the emotion in which impaired recognition was detected in the largest behavioural study of emotion recognition in pre-manifest Huntington's disease to date; and happiness is a positive emotion to contrast with disgust and anger. Ekman facial expressions were also used to quantify emotion recognition accuracy outside the scanner and structural magnetic resonance imaging with voxel-based morphometry was used to assess the relationship between emotion recognition accuracy and regional grey matter volume. Emotion processing in pre-manifest Huntington's disease was associated with reduced neural activity for all three emotions in partially separable functional networks. Furthermore, the Huntington's disease-associated modulation of disgust and happiness processing was negatively correlated with genetic markers of pre-manifest disease progression in distributed, largely extrastriatal networks. The modulated disgust network included insulae, cingulate cortices, pre- and postcentral gyri, precunei, cunei, bilateral putamena, right pallidum, right thalamus, cerebellum, middle frontal, middle occipital, right superior and left inferior temporal gyri, and left superior parietal lobule. The modulated happiness network included postcentral gyri, left caudate, right cingulate cortex, right superior and inferior parietal lobules, and right superior frontal, middle temporal, middle occipital and precentral gyri. These effects were not driven merely by striatal dysfunction. We did not find equivalent associations between brain structure and emotion recognition, and the pre-manifest Huntington's disease cohort did not have a behavioural deficit in out-of-scanner emotion recognition relative to controls. In addition, we found increased neural activity in the pre-manifest subjects in response to all three emotions in frontal regions, predominantly in the middle frontal gyri. Overall, these findings suggest that pathophysiological effects of Huntington's disease may precede the development of overt clinical symptoms and detectable cerebral atrophy.
Resumo:
Résumé: Output, inflation and interest rates are key macroeconomic variables, in particular for monetary policy. In modern macroeconomic models they are driven by random shocks which feed through the economy in various ways. Models differ in the nature of shocks and their transmission mechanisms. This is the common theme underlying the three essays of this thesis. Each essay takes a different perspective on the subject: First, the thesis shows empirically how different shocks lead to different behavior of interest rates over the business cycle. For commonly analyzed shocks (technology and monetary policy errors), the patterns square with standard models. The big unknown are sources of inflation persistence. Then the thesis presents a theory of monetary policy, when the central bank can better observe structural shocks than the public. The public will then seek to infer the bank's extra knowledge from its policy actions and expectation management becomes a key factor of optimal policy. In a simple New Keynesian model, monetary policy becomes more concerned with inflation persistence than otherwise. Finally, the thesis points to the huge uncertainties involved in estimating the responses to structural shocks with permanent effects.
Resumo:
Pelvic floor anatomy is complex and its three-dimensional organization is often difficult to understand for both undergrad- uate and postgraduate students. Here, we focused on several critical points that need to be considered when teaching the perineum. We have to deal with a mixed population of students and with a variety of interest. Yet, a perfect knowledge of the pelvic floor is the basis for any gynecologist and for any surgical intervention. Our objectives are several-fold; i) to estab- lish the objectives and the best way of teaching, ii) to identify and localize areas in the female pelvic floor that are suscepti- ble to generate problems in understanding the three-dimensional organization, iii) to create novel approaches by respecting the anatomical surroundings, and iv) prospectively, to identify elements that may create problems during surgery i.e. to have a closer look at nerve trajectories and on compression sites that may cause neuralgia or postoperative pain. A feedback from students concludes that they have difficulties to assimilate this much information, especially the different imaging tech- niques. Eventually, this will lead to a severe selection of what has to be taught and included in lectures or practicals. Another consequence is that more time to study prosected pelves needs to be given.
Resumo:
Novel cancer vaccines are capableto efficiently induce and boost humantumor antigen specific T-cells. However,the properties of these CD8T-cells are only partially characterized.For in depth investigation ofT-cells following Melan-A/MART-1peptide vaccination in melanoma patients,we conducted a detailed prospectivestudy at the single cell level.We first sorted individual human naiveand effector CD8 T-cells from peripheralblood by flow cytometry, andtested a modified RT-PCR protocolincluding a global amplification ofexpressed mRNAs to obtain sufficientcDNAfromsingle cells.We successfullydetected the expression ofseveral specific genes of interest evendown to 106-fold dilution (equivalentto 10-5 cell). We then analyzed tumor-specific effector memory (EM)CD8T-cell subpopulations ex vivo, assingle cells from vaccinated melanomapatients. To elucidate the hallmarksof effective immunity the genesignatures were defined by a panel ofgenes related to effector functions(e.g. IFN-, granzyme B, perforin),and individual clonotypes were identifiedaccording to the expression ofdistinct T-cell receptors (TCR). Usingthis novel single cell analysis approach,we observed that T-cell differentiationis clonotype dependent,with a progressive restriction in TCRBV clonotype diversity from EMCD28pos to EMCD28neg subsets. However,the effector function gene imprintingis clonotype-independent,but dependent on differentiation,since it correlates with the subset oforigin (EMCD28pos or EMCD28neg). We also conducted a detailedcomparative analysis after vaccinationwith natural vs. analog Melan-Apeptide. We found that the peptideused for vaccination determines thefunctional outcome of individualT-cell clonotypes, with native peptideinducing more potent effector functions.Yet, selective clonotypic expansionwith differentiation was preservedregardless of the peptide usedfor vaccination. In summary, the exvivo single cell RT-PCR approach ishighly sensitive and efficient, andrepresents a reliable and powerfultool to refine our current view of molecularprocesses taking place duringT-cell differentiation.
Resumo:
1. Statistical modelling is often used to relate sparse biological survey data to remotely derived environmental predictors, thereby providing a basis for predictively mapping biodiversity across an entire region of interest. The most popular strategy for such modelling has been to model distributions of individual species one at a time. Spatial modelling of biodiversity at the community level may, however, confer significant benefits for applications involving very large numbers of species, particularly if many of these species are recorded infrequently. 2. Community-level modelling combines data from multiple species and produces information on spatial pattern in the distribution of biodiversity at a collective community level instead of, or in addition to, the level of individual species. Spatial outputs from community-level modelling include predictive mapping of community types (groups of locations with similar species composition), species groups (groups of species with similar distributions), axes or gradients of compositional variation, levels of compositional dissimilarity between pairs of locations, and various macro-ecological properties (e.g. species richness). 3. Three broad modelling strategies can be used to generate these outputs: (i) 'assemble first, predict later', in which biological survey data are first classified, ordinated or aggregated to produce community-level entities or attributes that are then modelled in relation to environmental predictors; (ii) 'predict first, assemble later', in which individual species are modelled one at a time as a function of environmental variables, to produce a stack of species distribution maps that is then subjected to classification, ordination or aggregation; and (iii) 'assemble and predict together', in which all species are modelled simultaneously, within a single integrated modelling process. These strategies each have particular strengths and weaknesses, depending on the intended purpose of modelling and the type, quality and quantity of data involved. 4. Synthesis and applications. The potential benefits of modelling large multispecies data sets using community-level, as opposed to species-level, approaches include faster processing, increased power to detect shared patterns of environmental response across rarely recorded species, and enhanced capacity to synthesize complex data into a form more readily interpretable by scientists and decision-makers. Community-level modelling therefore deserves to be considered more often, and more widely, as a potential alternative or supplement to modelling individual species.
Resumo:
PURPOSE: To introduce a new k-space traversal strategy for segmented three-dimensional echo planar imaging (3D EPI) that encodes two partitions per radiofrequency excitation, effectively reducing the number excitations used to acquire a 3D EPI dataset by half. METHODS: The strategy was evaluated in the context of functional MRI applications for: image quality compared with segmented 3D EPI, temporal signal-to-noise ratio (tSNR) (the ability to detect resting state networks compared with multislice two-dimensional (2D) EPI and segmented 3D EPI, and temporal resolution (the ability to separate cardiac- and respiration-related fluctuations from the desired blood oxygen level-dependent signal of interest). RESULTS: Whole brain images with a nominal voxel size of 2 mm isotropic could be acquired with a temporal resolution under half a second using traditional parallel imaging acceleration up to 4× in the partition-encode direction and using novel data acquisition speed-up of 2× with a 32-channel coil. With 8× data acquisition speed-up in the partition-encode direction, 3D reduced excitations (RE)-EPI produced acceptable image quality without introduction of noticeable additional artifacts. Due to increased tSNR and better characterization of physiological fluctuations, the new strategy allowed detection of more resting state networks compared with multislice 2D-EPI and segmented 3D EPI. CONCLUSION: 3D RE-EPI resulted in significant increases in temporal resolution for whole brain acquisitions and in improved physiological noise characterization compared with 2D-EPI and segmented 3D EPI. Magn Reson Med 72:786-792, 2014. © 2013 Wiley Periodicals, Inc.