99 resultados para expression profiles
em Université de Lausanne, Switzerland
Resumo:
The biodistribution of transgene expression in the CNS after localized stereotaxic vector delivery is an important issue for safety of gene therapy for neurological diseases. The cellular specificity of transgene expression from rAAV2/1 vectors using the tetON expression cassette in comparison with the CMV promoter was investigated in the rat nigrostriatal pathway. After intrastriatal injection, although GFP was mainly expressed into neurons with both vectors, the relative proportions of DARPP-32+ projection neurons and parvalbumin+ interneurons were respectively 13:1 and 2:1 for the CMV and tetON vectors. DARP32+ neurons projecting to the globus pallidus were strongly GFP+ with both vectors, whereas those projecting to the substantia nigra pars reticulata (SNpr) were efficiently labeled by the CMV but poorly by the tetON vector. Numerous GFP+ cells were evidenced in the subventricular zone with both vectors. However, in the olfactory bulb (OB), GFP+ neurons were observed with the CMV but not the tetON vector. We conclude that the absence of significant amounts of transgene product in distant regions (SN and OB) constitutes a safety advantage of the AAV2/1-tetON vector for striatal gene therapy. Midbrain injections resulted in selective GFP expression in tyrosine hydroxylase+ neurons by the tetON vector whereas with the CMV vector, GFP+ cells covered a widespread area of the midbrain. The biodistribution of GFP protein corresponded to that of the transcripts and not of the viral genomes. We conclude that the rAAV2/1-tetON vector constitutes an interesting tool for specific transgene expression in midbrain dopaminergic neurons.
Resumo:
The distal parts of the renal tubule play a critical role in maintaining homeostasis of extracellular fluids. In this review, we present an in-depth analysis of microarray-based gene expression profiles available for microdissected mouse distal nephron segments, i.e., the distal convoluted tubule (DCT) and the connecting tubule (CNT), and for the cortical portion of the collecting duct (CCD; Zuber et al., Proc Natl Acad Sci USA 106:16523-16528, 2009). Classification of expressed transcripts in 14 major functional gene categories demonstrated that all principal proteins involved in maintaining the salt and water balance are represented by highly abundant transcripts. However, a significant number of transcripts belonging, for instance, to categories of G-protein-coupled receptors or serine/threonine kinases exhibit high expression levels but remain unassigned to a specific renal function. We also established a list of genes differentially expressed between the DCT/CNT and the CCD. This list is enriched by genes related to segment-specific transport functions and by transcription factors directing the development of the distal nephron or collecting ducts. Collectively, this in silico analysis provides comprehensive information about relative abundance and tissue specificity of the DCT/CNT and the CCD expressed transcripts and identifies new candidate genes for renal homeostasis.
Resumo:
The biodistribution of transgene expression in the CNS after localized stereotaxic vector delivery is an important issue for the safety of gene therapy for neurological diseases. The cellular specificity of transgene expression from rAAV2/1 vectors (recombinant adeno-associated viral vectors pseudotyped with viral capsids from serotype 1) using the tetracycline-inducible (TetON) expression cassette in comparison with the cytomegalovirus (CMV) promoter was investigated in the rat nigrostriatal pathway. After intrastriatal injection, although green fluorescent protein (GFP) was expressed mainly in neurons with both vectors, the relative proportions of DARPP-32-positive projection neurons and parvalbumin-positive interneurons were, respectively, 13:1 and 2:1 for the CMV and TetON vectors. DARP32-positive neurons projecting to the globus pallidus were strongly GFP positive with both vectors, whereas those projecting to the substantia nigra pars reticulata (SNpr) were efficiently labeled by the CMV vector but poorly by the TetON vector. Numerous GFP-positive cells were evidenced in the subventricular zone with both vectors. However, in the olfactory bulb (OB), GFP-positive neurons were observed with the CMV vector but not the TetON vector. We conclude that the absence of significant amounts of transgene product in distant regions (SN and OB) constitutes a safety advantage of the AAV2/1-TetON vector for striatal gene therapy. Midbrain injections resulted in selective GFP expression in tyrosine hydroxylase-positive neurons by the TetON vector whereas with the CMV vector, GFP-positive cells covered a widespread area of the midbrain. The biodistribution of GFP protein corresponded to that of the transcripts and not of the viral genomes. We conclude that the rAAV2/1-TetON vector constitutes an interesting tool for specific transgene expression in midbrain dopaminergic neurons.
Resumo:
INTRODUCTION: Breast cancer subtyping and prognosis have been studied extensively by gene expression profiling, resulting in disparate signatures with little overlap in their constituent genes. Although a previous study demonstrated a prognostic concordance among gene expression signatures, it was limited to only one dataset and did not fully elucidate how the different genes were related to one another nor did it examine the contribution of well-known biological processes of breast cancer tumorigenesis to their prognostic performance. METHOD: To address the above issues and to further validate these initial findings, we performed the largest meta-analysis of publicly available breast cancer gene expression and clinical data, which are comprised of 2,833 breast tumors. Gene coexpression modules of three key biological processes in breast cancer (namely, proliferation, estrogen receptor [ER], and HER2 signaling) were used to dissect the role of constituent genes of nine prognostic signatures. RESULTS: Using a meta-analytical approach, we consolidated the signatures associated with ER signaling, ERBB2 amplification, and proliferation. Previously published expression-based nomenclature of breast cancer 'intrinsic' subtypes can be mapped to the three modules, namely, the ER-/HER2- (basal-like), the HER2+ (HER2-like), and the low- and high-proliferation ER+/HER2- subtypes (luminal A and B). We showed that all nine prognostic signatures exhibited a similar prognostic performance in the entire dataset. Their prognostic abilities are due mostly to the detection of proliferation activity. Although ER- status (basal-like) and ERBB2+ expression status correspond to bad outcome, they seem to act through elevated expression of proliferation genes and thus contain only indirect information about prognosis. Clinical variables measuring the extent of tumor progression, such as tumor size and nodal status, still add independent prognostic information to proliferation genes. CONCLUSION: This meta-analysis unifies various results of previous gene expression studies in breast cancer. It reveals connections between traditional prognostic factors, expression-based subtyping, and prognostic signatures, highlighting the important role of proliferation in breast cancer prognosis.
Resumo:
PURPOSE: Although the central role of the immune system for tumor prognosis is generally accepted, a single robust marker is not yet available. EXPERIMENTAL DESIGN: On the basis of receiver operating characteristic analyses, robust markers were identified from a 60-gene B cell-derived metagene and analyzed in gene expression profiles of 1,810 breast cancer; 1,056 non-small cell lung carcinoma (NSCLC); 513 colorectal; and 426 ovarian cancer patients. Protein and RNA levels were examined in paraffin-embedded tissue of 330 breast cancer patients. The cell types were identified with immunohistochemical costaining and confocal fluorescence microscopy. RESULTS: We identified immunoglobulin κ C (IGKC) which as a single marker is similarly predictive and prognostic as the entire B-cell metagene. IGKC was consistently associated with metastasis-free survival across different molecular subtypes in node-negative breast cancer (n = 965) and predicted response to anthracycline-based neoadjuvant chemotherapy (n = 845; P < 0.001). In addition, IGKC gene expression was prognostic in NSCLC and colorectal cancer. No association was observed in ovarian cancer. IGKC protein expression was significantly associated with survival in paraffin-embedded tissues of 330 breast cancer patients. Tumor-infiltrating plasma cells were identified as the source of IGKC expression. CONCLUSION: Our findings provide IGKC as a novel diagnostic marker for risk stratification in human cancer and support concepts to exploit the humoral immune response for anticancer therapy. It could be validated in several independent cohorts and carried out similarly well in RNA from fresh frozen as well as from paraffin tissue and on protein level by immunostaining.
Resumo:
Molecular and genetic investigations in endometrial carcinogenesis may have prognostic and therapeutic implications. We studied the expression of EGFR, c-Met, PTEN and the mTOR signalling pathway (phospho-AKT/phospho-mTOR/phospho-RPS6) in 69 consecutive tumours and 16 tissue microarrays. We also analysed PIK3CA, K-Ras mutations and microsatellite instability (MSI). We distinguished two groups: group 1 (grade 1 and 2 endometrioid cancers) and group 2 (grade 3 endometrioid and type II clear and serous cell cancers). We hypothesised that these histological groups might have different features. We found that a) survival was higher in group 1 with less aggressive tumours (P⟨0.03); b) EGFR (P=0.01), PTEN and the AKT/mTOR/RPS6 signalling pathway were increased in group 1 versus group 2 (P=0.05 for phospho-mTOR); c) conversely, c-Met was higher (P⟨0.03) in group 2 than in group 1; d) In group 1, EGFR was correlated with c-Met, phospho-mTOR, phospho-RPS6 and the global activity of the phospho-AKT/phospho-mTOR/phospho-RPS6 pathway. In group 2, EGFR was correlated only with the phospho-AKT/phospho-mTOR/phospho-RPS6 pathway, whereas c-Met was correlated with PTEN; e) survival was higher for tumours with more than 50% PTEN-positive cells; f) K-RAS and PIK3CA mutations occurred in 10-12% of the available tumours and MSI in 40.4%, with a loss of MLH1 and PMS2 expression. Our results for endometrial cancers provide the first evidence for a difference in status between groups 1 and 2. The patients may benefit from different targeted treatments, anti-EGFR agents and rapamycin derivatives (anti-mTOR) for group 1 and an anti c-MET/ligand complex for group 2.
Resumo:
Abstract : A preliminary understanding of the phenotypic effect of copy number variation (CNV) of DNA segments is emerging. These rearrangements were shown to influence, in a somewhat dose-dependent manner, the expression of genes mapping within them. They were also shown to modify the expression of genes located on their Hanks, sometimes at great distance. Here, we demonstrate by monitoring these effects at multiple life stages, that these controls over expression are effective throughout mouse development. Similarly, we observe that the more specific spatial expression patterns of CNV genes are maintained through life. However, 'we find that some brain- expressed genes mapping within CNVS appear to be under compensatory loops only at specific time-points, indicating that the effect of CNVS on these genes is modulated during development. Notably, we also observe that CNV genes are significantly enriched within transcripts that show variable time-course expression between strains. Thus, modifying the copy number of a gene may potentially alter not only its expression level, but its timing of expression as well. Résume : Nous commençons à comprendre les effets phénotypiques liés aux séquences d'ADN qui changent de nombre de copies d'un individu a l'autre. Des travaux précédents ont montré que ces variante de nombre de copies (CNVS) avaient une influence sur l'expression non seulement des gènes se trouvant dans le réarrangement, mais aussi sur ceux se trouvant à une certaine distance. Le présent travail étudie ces effets à différents stades du développement de la souris allant d'un embryon de deux semaines à la souris adulte. Nous avons observé que certains gènes exprimés dans le cerveau semblent soumis à un contrôle plus strict a certaines étapes du développement suggèrent que l'effet des CNVs est modulé différemment au cours de la vie. Notre travail sur trois souches différentes de souris a permis de montrer que les gènes ayant un profil d'expression différent dans le temps entre souches sont enrichis en gènes se trouvant dans des CNVs. Ceci nous amène à penser que les CNVs ont, non seulement une influence sur le niveau d'expression des gènes, mais aussi sur les moments durant lesquels ils seront exprimés. Résumé pour un large public : De nombreuses maladies sont dues soit a un gain (on parle alors de duplication) soit à une perte de matériel génétique (il s'agit dune délétion). Bien que les recherches visant à identifier les mécanismes moléculaires liés à ces réarrangements de notre génome progressent continuellement, la plupart des causes des maladies génétiques restent à élucider. Certaines parties de notre génome sont présentes en un nombre de copies qui diffère d'un individu à l'autre sans pour autant provoquer une ou des maladies. Ces segments d'ADN qui varient en nombre sont appelés Copy Number Variant (CNVs). Ils couvrent environ 12% de notre matériel génétique. Des études menées sur différents modèles animaux ont montré que les CNVs avaient une influence aussi bien sur les gènes qui sont a l'intérieur des CNVs que sur ceux qui sont dans leur voisinage. Ce travail étudie l'effet des CNVs à travers différents stades du développement de la souris. Nous avons démontré que les segments d'ADN qui varient en nombre de copies ont des effets variables selon le stade auxquels ils sont mesurés. Ainsi, les CNVs ont non seulement un impact sur l'expression des gènes présents dans ces régions et dans leur voisinage, mais influencent également leurs profils d'expression au cours du temps.
Resumo:
Medulloblastoma is the most frequent malignant paediatric brain tumour. The activation of the Wnt/beta-catenin pathway occurs in 10-15% of medulloblastomas and has been recently described as a marker for favourable patient outcome. We report a series of 72 paediatric medulloblastomas evaluated for beta-catenin protein expression, CTNNB1 mutations, and comparative genomic hybridization. Gene expression profiles were also available in a subset of 40 cases. Immunostaining of beta-catenin showed extensive nuclear staining (>50% of the tumour cells) in six cases and focal nuclear staining (<10% of cells) in three cases. The other cases either exhibited a signal strictly limited to the cytoplasm (58 cases) or were negative (five cases). CTNNB1 mutations were detected in all beta-catenin extensively nucleopositive cases. The expression profiles of these cases documented strong activation of the Wnt/beta-catenin pathway. Remarkably, five out of these six tumours showed a complete loss of chromosome 6. In contrast, cases with focal nuclear beta-catenin staining, as well as tumours with negative or cytoplasmic staining, never demonstrated CTNNB1 mutation, Wnt/beta-catenin pathway activation or chromosome 6 loss. Patients with extensive nuclear staining were significantly older at diagnosis and were in continuous complete remission after a mean follow-up of 75.7 months (range 27.5-121.2 months) from diagnosis. All three patients with focal nuclear staining of beta-catenin died within 36 months from diagnosis. Altogether, these data confirm and extend previous observations that CTNNB1-mutated tumours represent a distinct molecular subgroup of medulloblastomas with favourable outcome, indicating that therapy de-escalation should be considered. International consensus on the definition criteria of this distinct medulloblastoma subgroup should be achieved.
Resumo:
CD8 T cells play a key role in mediating protective immunity against selected pathogens after vaccination. Understanding the mechanism of this protection is dependent upon definition of the heterogeneity and complexity of cellular immune responses generated by different vaccines. Here, we identify previously unrecognized subsets of CD8 T cells based upon analysis of gene-expression patterns within single cells and show that they are differentially induced by different vaccines. Three prime-boost vector combinations encoding HIV Env stimulated antigen-specific CD8 T-cell populations of similar magnitude, phenotype, and functionality. Remarkably, however, analysis of single-cell gene-expression profiles enabled discrimination of a majority of central memory (CM) and effector memory (EM) CD8 T cells elicited by the three vaccines. Subsets of T cells could be defined based on their expression of Eomes, Cxcr3, and Ccr7, or Klrk1, Klrg1, and Ccr5 in CM and EM cells, respectively. Of CM cells elicited by DNA prime-recombinant adenoviral (rAd) boost vectors, 67% were Eomes(-) Ccr7(+) Cxcr3(-), in contrast to only 7% and 2% stimulated by rAd5-rAd5 or rAd-LCMV, respectively. Of EM cells elicited by DNA-rAd, 74% were Klrk1(-) Klrg1(-)Ccr5(-) compared with only 26% and 20% for rAd5-rAd5 or rAd5-LCMV. Definition by single-cell gene profiling of specific CM and EM CD8 T-cell subsets that are differentially induced by different gene-based vaccines will facilitate the design and evaluation of vaccines, as well as enable our understanding of mechanisms of protective immunity.
Resumo:
Type 2 diabetes mellitus (T2DM) is a major disease affecting nearly 280 million people worldwide. Whilst the pathophysiological mechanisms leading to disease are poorly understood, dysfunction of the insulin-producing pancreatic beta-cells is key event for disease development. Monitoring the gene expression profiles of pancreatic beta-cells under several genetic or chemical perturbations has shed light on genes and pathways involved in T2DM. The EuroDia database has been established to build a unique collection of gene expression measurements performed on beta-cells of three organisms, namely human, mouse and rat. The Gene Expression Data Analysis Interface (GEDAI) has been developed to support this database. The quality of each dataset is assessed by a series of quality control procedures to detect putative hybridization outliers. The system integrates a web interface to several standard analysis functions from R/Bioconductor to identify differentially expressed genes and pathways. It also allows the combination of multiple experiments performed on different array platforms of the same technology. The design of this system enables each user to rapidly design a custom analysis pipeline and thus produce their own list of genes and pathways. Raw and normalized data can be downloaded for each experiment. The flexible engine of this database (GEDAI) is currently used to handle gene expression data from several laboratory-run projects dealing with different organisms and platforms. Database URL: http://eurodia.vital-it.ch.
Resumo:
PURPOSE: The purpose of this work was to study the influence of cell differentiation on the mRNA expression of transporters and channels in Caco-2 cells and to assess Caco-2 cells as a model for carrier-mediated drug transport in the intestines. METHOD: Gene mRNA expression was measured using a custom-designed microarray chip with 750 deoxyoligonucleotide probes (70mers). Each oligomer was printed four times on poly-lysine-coated glass slides. Expression profiles were expressed as ratio values between fluorescence intensities of Cy3 and Cy5 dye-labeled cDNA derived from poly(A) + RNA samples of Caco-2 cells and total RNA of human intestines. RESULTS: Significant differences in the mRNA expression profile of transporters and channels were observed upon differentiation of Caco-2 cells from 5 days to 2 weeks in culture, including changes for MAT8, S-protein, and Nramp2. Comparing Caco-2 cells of different passage number revealed few changes in mRNAs except for GLUT3, which was down-regulated 2.4-fold within 13 passage numbers. Caco-2 cells had a similar expression profile when either cultured in flasks or on filters but differed more strongly from human small and large intestine, regardless of the differentiation state of Caco-2 cells. Expression of several genes highly transcribed in small or large intestines differed fourfold or more in Caco-2 cells. CONCLUSIONS: Although Caco-2 cells have proven a suitable model for studying carrier-mediated transport in human intestines, the expression of specific transporter and ion channel genes may differ substantially.
Resumo:
The development of targeted treatment strategies adapted to individual patients requires identification of the different tumor classes according to their biology and prognosis. We focus here on the molecular aspects underlying these differences, in terms of sets of genes that control pathogenesis of the different subtypes of astrocytic glioma. By performing cDNA-array analysis of 53 patient biopsies, comprising low-grade astrocytoma, secondary glioblastoma (respective recurrent high-grade tumors), and newly diagnosed primary glioblastoma, we demonstrate that human gliomas can be differentiated according to their gene expression. We found that low-grade astrocytoma have the most specific and similar expression profiles, whereas primary glioblastoma exhibit much larger variation between tumors. Secondary glioblastoma display features of both other groups. We identified several sets of genes with relatively highly correlated expression within groups that: (a). can be associated with specific biological functions; and (b). effectively differentiate tumor class. One prominent gene cluster discriminating primary versus nonprimary glioblastoma comprises mostly genes involved in angiogenesis, including VEGF fms-related tyrosine kinase 1 but also IGFBP2, that has not yet been directly linked to angiogenesis. In situ hybridization demonstrating coexpression of IGFBP2 and VEGF in pseudopalisading cells surrounding tumor necrosis provided further evidence for a possible involvement of IGFBP2 in angiogenesis. The separating groups of genes were found by the unsupervised coupled two-way clustering method, and their classification power was validated by a supervised construction of a nearly perfect glioma classifier.
Resumo:
SUMMARY: Large sets of data, such as expression profiles from many samples, require analytic tools to reduce their complexity. The Iterative Signature Algorithm (ISA) is a biclustering algorithm. It was designed to decompose a large set of data into so-called 'modules'. In the context of gene expression data, these modules consist of subsets of genes that exhibit a coherent expression profile only over a subset of microarray experiments. Genes and arrays may be attributed to multiple modules and the level of required coherence can be varied resulting in different 'resolutions' of the modular mapping. In this short note, we introduce two BioConductor software packages written in GNU R: The isa2 package includes an optimized implementation of the ISA and the eisa package provides a convenient interface to run the ISA, visualize its output and put the biclusters into biological context. Potential users of these packages are all R and BioConductor users dealing with tabular (e.g. gene expression) data. AVAILABILITY: http://www.unil.ch/cbg/ISA CONTACT: sven.bergmann@unil.ch
Resumo:
Peripheral T-cell lymphoma (PTCL) is a rare, heterogeneous type of non-Hodgkin lymphoma (NHL) that, in general, is associated with a poor clinical outcome. Therefore, a current major challenge is the discovery of new prognostic tools for this disease. In the present study, a cohort of 122 patients with PTCL was collected from a multicentric T-cell lymphoma consortium (TENOMIC). We analyzed the expression of 80 small nucleolar RNAs (snoRNAs) using high-throughput quantitative PCR. We demonstrate that snoRNA expression analysis may be useful in both the diagnosis of some subtypes of PTCL and the prognostication of both PTCL-not otherwise specified (PTCL-NOS; n = 26) and angio-immunoblastic T-cell lymphoma (AITL; n = 46) patients treated with chemotherapy. Like miRNAs, snoRNAs are globally down-regulated in tumor cells compared with their normal counterparts. In the present study, the snoRNA signature was robust enough to differentiate anaplastic large cell lymphoma (n = 32) from other PTCLs. For PTCL-NOS and AITL, we obtained 2 distinct prognostic signatures with a reduced set of 3 genes. Of particular interest was the prognostic value of HBII-239 snoRNA, which was significantly over-expressed in cases of AITL and PTCL-NOS that had favorable outcomes. Our results suggest that snoRNA expression profiles may have a diagnostic and prognostic significance for PTCL, offering new tools for patient care and follow-up.