144 resultados para evolutionary transitions

em Université de Lausanne, Switzerland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

• Grasses rank among the world's most ecologically and economically important plants. Repeated evolution of the C(4) syndrome has made photosynthesis highly efficient in many grasses, inspiring intensive efforts to engineer the pathway into C(3) crops. However, comparative biology has been of limited use to this endeavor because of uncertainty in the number and phylogenetic placement of C(4) origins. • We built the most comprehensive and robust molecular phylogeny for grasses to date, expanding sampling efforts of a previous working group from 62 to 531 taxa, emphasizing the C(4)-rich PACMAD (Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae and Danthonioideae) clade. Our final matrix comprises c. 5700 bp and is > 93% complete. • For the first time, we present strong support for relationships among all the major grass lineages. Several new C(4) lineages are identified, and previously inferred origins confirmed. C(3)/C(4) evolutionary transitions have been highly asymmetrical, with 22-24 inferred origins of the C(4) pathway and only one potential reversal. • Our backbone tree clarifies major outstanding systematic questions and highlights C(3) and C(4) sister taxa for comparative studies. Two lineages have emerged as hotbeds of C(4) evolution. Future work in these lineages will be instrumental in understanding the evolution of this complex trait.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evolution of eusociality is one of the major evolutionary transitions of life on earth. For investigating the conditions and processes that are central to the origin of such integrated social organization, it is best to study organisms in which individuals have retained some flexibility in their reproductive strategies. Halictid bees are especially well suited as model organisms, because they show huge variation in social systems, both within and between species. In this thesis, I investigated female reproductive strategies in the primitively eusocial bee Halictus scabiosae, with a focus on the role of helpers, in order to get insight into the mechanisms governing the evolution and maintenance of eusociality. This species produces two broods per year. The females from the first brood can stay in the natal nest to help raise a second brood of males and gynes that become the next-generation foundresses in spring. We first compared the morphology of females from the two broods, as well as the nutrition they receive as larvae. Then we conducted a helper- removal experiment in the field to quantify the effects of the presence of helpers on colony survival and productivity. Finally, we reconstructed pedigree relationships of individuals using microsatellite markers in order to detect who reproduces in the nest and how much individuals drift between nests. We found that first brood females had a uniformly small size and low fat reserves, which may be caused by the restricted pollen and nectar provisions on which they develop. Colony survival and productivity was increased by the presence of a single helper, but the effect was small and mostly limited to small colonies. By inferring parentage within and across colonies, we could determine that females from the first brood rarely reproduce in their natal nests. However, foundresses are frequently replaced, and foundresses and females from the first brood occasionally move to and reproduce in foreign colonies. As a result, colonies often contain offspring from unrelated individuals, and the relatedness of females to the brood they rear is low. Overall, this thesis shows that the reproductive system of H. scabiosae is highly flexible. The production of helpers in the first brood is important for colony success and productivity, but there is a high colony failure rate and part of the first brood females drift and reproduce in foreign nests. Both foundresses and helpers appear to be constrained by harsh environmental conditions or social factors limiting reproduction and independent colony founding. - L'origine des insectes sociaux est un domaine fascinant pour la recherche. Pour comprendre les mécanismes et les conditions qui sont nécessaires pour l'évolution et le maintien de la vie en société, il est judicieux d'étudier des sociétés primitives d'insectes, où toutes les femelles ont conservé la capacité de se reproduire, même si leur rôle comportemental dans la colonie est d'aider sans se reproduire. Une des familles d'abeilles, les halictes, est idéale pour cette sorte de recherche, en raison de la grande variabilité dans leur comportement social. Dans cette thèse, j'ai étudié les stratégies reproductives des femelles de Halictus scabiosae pour mieux comprendre les mécanismes qui influencent l'évolution de la vie en société. Cette espèce produit deux cohortes de couvain par année. Les femelles du premier couvain restent souvent dans leur nid natal pour aider à élever le deuxième couvain, tandis que les femelles du deuxième couvain s'accouplent et hibernent pour devenir les nouvelles fondatrices au printemps suivant. Nous avons d'abord comparé la morphologie des femelles issues des deux couvains ainsi que leur nutrition au stade de larve. Puis, dans une expérience sur le terrain, nous avons quantifié l'apport d'une ouvrière pour la survie et la productivité de la colonie. Finalement, nous avons reconstruit des pedigrees en utilisant des marqueurs génétiques, pour savoir qui se reproduit dans la colonie et combien d'individus migrent entre colonies. Les résultats montrent que les femelles du premier couvain sont uniformément plus petites et plus maigres, ce qui indique que les fondatrices réduisent les provisions de nourriture pour leur premier couvain afin de les inciter à aider dans le nid au lieu de se reproduire indépendamment. Dans l'expérience sur le terrain, la survie et la productivité de la colonie augmentaient avec la présence d'une ouvrière additionnelle, mais l'effet était petit et limité aux petites colonies. Par la reconstruction de pedigrees, nous pouvions constater que les femelles du premier couvain pondent rarement dans leurs nids natals. Les fondatrices cependant sont souvent remplacées en cours de saison, et migrent fréquemment entre nids, tandis que les femelles du premier couvain pondent parfois des oeufs dans des nids étrangers. De ce fait, les colonies contiennent souvent des descendants d'individus étrangers, et la parenté génétique entre les femelles et le deuxième couvain est basse. Cette thèse démontre que le système reproductif de H. scabiosae est très flexible. La production d'ouvrières est importante pour la survie de la colonie et sa productivité, mais le taux d'échec est élevé et une partie des femelles du premier couvain migrent et pondent dans une colonie étrangère. Autant les fondatrices que les ouvrières semblent être contraintes par des conditions environnementales ou sociales qui limitent la reproduction et les nouvelles fondations de colonie. - Die Entstehung von sozialen Lebensformen ist eines der wichtigsten Entwicklungen in der Geschichte des Lebens. Um die Bedingungen oder Prozesse zu verstehen, welche bei der Entstehung und dem Erhalt von sozialen Merkmalen wichtig sind, sollte man Lebewesen untersuchen, welche je nach Umwelteinflüßen ihr soziales Verhalten flexibel ändern können. Furchenbienen (Halictidae) gehören dazu. Diese weisen nämlich ein breites Spektrum verschiedener sozialer Organisationsformen auf, oftmals sogar innerhalb der einzelnen Arten. In meiner Doktorarbeit befasste ich mich mit den Fortpflanzungsstrategien der Weibchen der Skabiosen-Furchenbiene Halictus scabiosae. Diese Art produziert zwei Brüten pro Jahr. Die Weibchen der ersten Brut bleiben dabei meist als Arbeiterinnen in ihrem Geburtsnest, wohingegen die Weibchen der zweiten Brut nach der Paarung überwintern, um im nächsten Frühling neue Kolonien zu gründen. In einem ersten Schritt verglichen wir die beiden Brüten bezüglich der Grösse und der Fettreserven der Weibchen sowie der Pollen-Nektar-Vorräte für die Larven. Dann bestimmten wir in einem Feldexperiment, wieviel eine zusätzliche Arbeiterin zum Überleben und zur Produktiviät der Kolonie beiträgt. Schliesslich ermittelten wir durch genetische Tests die Verwandtschaftsbeziehungen zwischen den Bienen, um herauszufinden, wer in den Kolonien tatsächlich die Eier legt und ob und wieviel die Bienen zwischen verschiedenen Nestern wandern. Wir stellten fest, dass die Weibchen von der ersten Brut einheitlich kleiner sind und weniger Fettreserven besitzen. Das weist daraufhin, dass die Nestgründerin die erste Brut unterernährt, um die Wahrscheinlichkeit zu erhöhen, dass diese Weibchen als Arbeiterinnen im Nest bleiben anstatt sich unabhängig fortzupflanzen. Schon eine einzelne zusätzliche Arbeiterin verbesserte die Überlebenschancen und Produktivität der Kolonie, der Effekt war allerdings klein und auf kleine Kolonien beschränkt. Die Verwandtschaftsanalysen zeigten, dass die Arbeiterinnen nur sehr selten ein Ei in ihr Geburtsnest legen. Erstaunlicherweise wanderten die Nestgründerinnen oft zwischen verschiedenen Nestern. Einige Weibchen der ersten Brut wanderten auch in ein fremdes Nest und produzierten dort Nachkommen. Diese Doktorarbeit zeigt, dass die Fortpflanzungsstrategien der Skabiosen-Furchenbiene tatsächlich sehr flexibel sind. Die Anwesenheit von Arbeiterinnen ist wichtig für das Überleben und die Produktivität der Kolonie. Die Misserfolgsraten bleiben jedoch hoch, und ein Teil der Weibchen der ersten Brut pflanzt sich in fremden Nestern fort. Sowohl die Nestgründerinnen als auch die Weibchen der ersten Brut scheinen durch Umweltsbedingungen oder durch soziale Faktoren in der Wahl ihrer Fortpflanzungs¬strategie eingeschränkt zu sein.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

C(4) photosynthesis is an adaptation over the classical C(3) pathway that has evolved multiple times independently. These convergences are accompanied by strong variations among the independent C(4) lineages. The decarboxylating enzyme used to release CO(2) around Rubisco particularly differs between C(4) species, a criterion used to distinguish three distinct biochemical C(4) subtypes. The phosphoenolpyruvate carboxykinase (PCK) serves as a primary decarboxylase in a minority of C(4) species. This enzyme is also present in C(3) plants, where it is responsible for nonphotosynthetic functions. The genetic changes responsible for the evolution of C(4)-specific PCK are still unidentified. Using phylogenetic analyses on PCK sequences isolated from C(3) and C(4) grasses, this study aimed at resolving the evolutionary history of C(4)-specific PCK enzymes. Four independent evolutions of C(4)-PCK were shown to be driven by positive selection, and nine C(4)-adaptive sites underwent parallel genetic changes in different C(4) lineages. C(4)-adaptive residues were also observed in C(4) species from the nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME) subtype and particularly in all taxa where a PCK shuttle was previously suggested to complement the NADP-ME pathway. Acquisitions of C(4)-specific PCKs were mapped on a species tree, which revealed that the PCK subtype probably appeared at the base of the Chloridoideae subfamily and was then recurrently lost and secondarily reacquired at least three times. Linking the genotype to subtype phenotype shed new lights on the evolutionary transitions between the different C(4) subtypes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Risella Carter and Laxtorum Blome, two genera from the diverse Rhaetian fauna of the Sandilands Formation, Queen Charlotte Islands, are used to illustrate phyletic trends in latest Triassic Radiolaria. Several distinct morphotypes constituting a lineage are recognized for each genus. These lineages are homogenous, evolved in situ, and show a continuum of variation through time. The evolution of Risella takes place entirely in the Rhaetian and all species disappear at the end of the Triassic. Earliest species of Laxtorum appear in the upper Norian and evolve rapidly in the Rhaetian. All Rhaetian species go extinct at the end of the Triassic but the genus survives marginally into the Lower Jurassic. Morphological transformations in Risella (a paronaellid) are manifest in the external/cortical shell as the shape changes from triangular to three-rayed. In Laxtorum, distal post abdominal chambers become constricted and eventually develop a terminal tube while, at the same time, an increase in size and sphericity is coupled with a reduction in the number of post abdominal chambers. Evolutionary transitions in the Risella lineage probably represent a reversion of the normal hypothesized trend for paronaellid radiolarians. In the Laxtorum lineage, comparisons with other groups and species displaying similar homeomorphies suggest the evolutionary trends are fundamental and occur repeatedly in faunas of all ages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of how cooperation can evolve between individuals or entities with conflicting interests is central to biology as many of the major evolutionary transitions, from the first replicating molecules to human societies, have required solving this problem. There are many routes to cooperation but humans seem to be distinct from other species as they have more complex and diverse mechanisms, often due to their higher cognitive skills, allowing them to reap the benefits from living in groups. Among those mechanisms, the use of reputation or past experience with others as well as sanctioning mechanisms both seem to be of major importance. They have often been considered separately but the interaction between the two might provide new insights as to how punishment could have appeared as a means to enforce cooperation in early humans. In this thesis, I firstly use theoretical approaches from evolutionary game theory to investigate the evolution of punishment and cooperation through a reputation system based on punitive actions, and compare the efficacy of this system, in terms of cooperation achieved, with one based on cooperative actions. On the other hand, I use empirical approaches from economics to test, in real life, predictions from theoretical models but also to explore further conditions such as environmental variation, constrained memory, or even the scale of competition between individuals. Both approaches have allowed contributing to the understanding of how these factors affect reputation and punishment use, and ultimately how cooperation is achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The persistence of sexual reproduction in the face of competition from asexual invaders is more likely if asexual lineages are produced infrequently or have low fitness. The generation rate and success of new asexual lineages will be influenced by the proximate mechanisms underlying transitions to asexuality. As such, characterization of these mechanisms can help explain the distribution of reproductive modes among natural populations. Here, we synthesize the literature addressing proximate causes of transitions from sexual to asexual reproduction in plants and animals. In cyclical and facultatively asexual taxa, individual mutations can cause obligate asexuality. The evolution of asexuality in obligately sexual groups is more complex, requiring the simultaneous acquisition of two traits generally controlled by different genetic factors: unreduced gamete formation and spontaneous development of unfertilized gametes. At least three 'pre-adaptations' could favour transitions to obligate asexuality in obligate sexuals. First, linkage among loci affecting separate key components of asexuality facilitates its spread, with evidence for these linkage blocks in plants. Second, asexuality should evolve more readily in haplodiploids; support for this hypothesis comes from two examples where a single locus causes transitions to asexuality. Third, standing genetic variation for the production of unreduced gametes could facilitate transitions to asexuality, but whether the ability to produce unreduced gametes contributes to the evolution of obligate asexuality remains unclear. We close by reviewing the associations between asexuality, hybridization and polyploidy, and argue that current data suggest that hybridization is more likely to play a causal role in transitions to asexuality than polyploidy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rubisco is responsible for the fixation of CO2 into organic compounds through photosynthesis and thus has a great agronomic importance. It is well established that this enzyme suffers from a slow catalysis, and its low specificity results into photorespiration, which is considered as an energy waste for the plant. However, natural variations exist, and some Rubisco lineages, such as in C4 plants, exhibit higher catalytic efficiencies coupled to lower specificities. These C4 kinetics could have evolved as an adaptation to the higher CO2 concentration present in C4 photosynthetic cells. In this study, using phylogenetic analyses on a large data set of C3 and C4 monocots, we showed that the rbcL gene, which encodes the large subunit of Rubisco, evolved under positive selection in independent C4 lineages. This confirms that selective pressures on Rubisco have been switched in C4 plants by the high CO2 environment prevailing in their photosynthetic cells. Eight rbcL codons evolving under positive selection in C4 clades were involved in parallel changes among the 23 independent monocot C4 lineages included in this study. These amino acids are potentially responsible for the C4 kinetics, and their identification opens new roads for human-directed Rubisco engineering. The introgression of C4-like high-efficiency Rubisco would strongly enhance C3 crop yields in the future CO2-enriched atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of grasses using C4 photosynthesis and their sudden rise to ecological dominance 3 to 8 million years ago is among the most dramatic examples of biome assembly in the geological record. A growing body of work suggests that the patterns and drivers of C4 grassland expansion were considerably more complex than originally assumed. Previous research has benefited substantially from dialog between geologists and ecologists, but current research must now integrate fully with phylogenetics. A synthesis of grass evolutionary biology with grassland ecosystem science will further our knowledge of the evolution of traits that promote dominance in grassland systems and will provide a new context in which to evaluate the relative importance of C4 photosynthesis in transforming ecosystems across large regions of Earth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trioecy is an uncommon sexual system in which males, females, and hermaphrodites co-occur as three clearly different gender classes. The evolutionary stability of trioecy is unclear, but would depend on factors such as hermaphroditic sex allocation and rates of outcrossing vs. selfing. Here, trioecious populations of Mercurialis annua are described for the first time. We examined the frequencies of females, males and hermaphrodites across ten natural populations and evaluated the association between the frequency of females and plant densities. Previous studies have shown that selfing rates in this species are density-dependent and are reduced in the presence of males, which produce substantially more pollen than hermaphrodites. Accordingly, we examined the evolutionary stability of trioecy using an experiment in which we (a) indirectly manipulated selfing rates by altering plant densities and the frequency of males in a fully factorial manner across 20 experimental plots and (b) examined the effect of these manipulations on the frequency of the three sex phenotypes in the next generation of plants. In the parental generation, we measured the seed and pollen allocations of hermaphrodites and compared them with allocations by unisexual plants. In natural populations, females occurred at higher frequencies in denser patches, a finding consistent with our expectations. Under our experimental conditions, however, no combination of plant densities and male frequencies was associated with increased frequencies of females. Our results suggest that the factors that regulate female frequencies in trioecious populations of M. annua are independent of those regulating male frequencies (density), and that the stable co-existence of all three sex phenotypes within populations is unlikely.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: To provide updated insights into innate antiviral immunity and highlight prototypical evolutionary features of well characterized HIV restriction factors. RECENT FINDINGS: Recently, a new HIV restriction factor, Myxovirus resistance 2, has been discovered and the region/residue responsible for its activity identified using an evolutionary approach. Furthermore, IFI16, an innate immunity protein known to sense several viruses, has been shown to contribute to the defense to HIV-1 by causing cell death upon sensing HIV-1 DNA. SUMMARY: Restriction factors against HIV show characteristic signatures of positive selection. Different patterns of accelerated sequence evolution can distinguish antiviral strategies--offense or defence--as well as the level of specificity of the antiviral properties. Sequence analysis of primate orthologs of restriction factors serves to localize functional domains and sites responsible for antiviral action. We use recent discoveries to illustrate how evolutionary genomic analyses help identify new antiviral genes and their mechanisms of action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heat- and odour-producing genus Arum (Araceae) has interested scientists for centuries. This long-term interest has allowed a deep knowledge of some complex processes, such as the physiology and dynamics of its characteristic lure-and-trap pollination system, to be built up. However, mainly because of its large distributional range and high degree of morphological variation, species' limits and relationships are still under discussion. Today, the genus comprises 28 species subdivided into two subgenera, two sections and six subsections. In this study, the phylogeny of the genus is inferred on the basis of four plastid regions, and the evolution of several morphological characters is investigated. Our phylogenetic hypothesis is not in agreement with the current infrageneric classification of the genus and challenges the monophyly of several species. This demonstrates the need for a new infrageneric classification based on characters reflecting the evolution of this enigmatic genus. To investigate the biogeography of Arum deeply, further spatiotemporal analyses were performed, addressing the importance of the Mediterranean basin in the diversification of Arum. Our results suggest that its centre of origin was the European-Aegean region, and that major diversification happened during the last 10 Myr.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The question of why some social systems have evolved close inbreeding is particularly intriguing given expected short- and long-term negative effects of this breeding system. Using social spiders as a case study, we quantitatively show that the potential costs of avoiding inbreeding through dispersal and solitary living could have outweighed the costs of inbreeding depression in the origin of inbred spider sociality. We further review the evidence that despite being favored in the short term, inbred spider sociality may constitute in the long run an evolutionary dead end. We also review other cases, such as the naked mole rats and some bark and ambrosia beetles, mites, psocids, thrips, parasitic ants, and termites, in which inbreeding and sociality are associated and the evidence for and against this breeding system being, in general, an evolutionary dead end.