5 resultados para estrias de Caspary

em Université de Lausanne, Switzerland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Controlling external compound entrance is essential for plant survival. To set up an efficient and selective sorting of nutrients, free diffusion via the apoplast in vascular plants is blocked at the level of the endodermis. Although we have learned a lot about endodermal specification in the last years, information regarding its differentiation is still very limited. A differentiated endodermal cell can be defined by the presence of the "Casparian strip" (CS), a cell wall modification described first by Robert Caspary in 1865. While the anatomical description of CS in many vascular plants has been very detailed, we still lack molecular information about the establishment of the Casparian strips and their actual function in roots. The recent isolation of a novel protein family, the CASPs, that localizes precisely to a domain of the plasma membrane underneath the CS represents an excellent point of entry to explore CS function and formation. In addition, it has been shown that the endodermis contains transporters that are localized to either the central (stele-facing) or peripheral (soil-facing) plasma membranes. These features suggest that the endodermis functions as a polar plant epithelium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vascular plants, the best-known feature of a differentiated endodermal cell is the "Casparian Strip" (CS). This structure refers to a highly localized cell wall impregnation in the transversal and anticlinal walls of the cell, which surrounds the cell like a belt/ring and is tightly coordinated with respect to neighboring cells. Analogous to tight junctions in animal epithelia, CS in plants act as a diffusion barrier that controls the movement of water and ions from soil into the stele. Since its first description by Robert Caspary in 1865 there have been many attempts to identify the chemical nature of the cell wall deposition in CS. Suberin, lignin, or both have been claimed to be the important components of CS in a series of different species. However, the exact chemical composition of CS has remained enigmatic. This controversy was due to the confusion and lack of knowledge regarding the precise measurement of three developmental stages of the endodermis. The CS represent only the primary stage of endodermal differentiation, which is followed by the deposition of suberin lamellae all around the cellular surface of endodermal cells (secondary developmental stage). Therefore, chemical analysis of whole roots, or even of isolated endodermal tissues, will always find both of the polymers present. It was crucial to clarify this point because this will guide our efforts to understand which cell wall biosynthetic component becomes localized in order to form the CS. The main aim of my work was to find out the major components of (early) CS, as well as their spatial and temporal development, physiological roles and relationship to barrier formation. Employing the knowledge and tools that have been accumulated over the last few years in the model plant Arabidopsis thaliana, various histological and chemical assays were used in this study. A particular feature of my work was to completely degrade, or inhibit formation of lignin and suberin biopolymers by biochemical, classical genetic and molecular approaches and to investigate its effect on CS formation and the establishment of a functional diffusion barrier. Strikingly, interference with monolignol biosynthesis abrogates CS formation and delays the formation of function diffusion barrier. In contrast, transgenic plants devoid of any detectable suberin still develop a functional CS. The combination of all these assays clearly demonstrates that the early CS polymer is made from monolignol (lignin monomers) and is composed of lignin. By contrast, suberin is formed much later as a secondary wall during development of endodermis. These early CS are functionally sufficient to block extracellular diffusion and suberin does not play important role in the establishment of early endodermal diffusion barrier. Moreover, suberin biosynthetic machinery is not present at the time of CS formation. Our study finally concludes the long-standing debate about the chemical nature of CS and opens the door to a new approach in lignin research, specifically for the identification of the components of the CS biosynthetic pathway that mediates the localized deposition of cell walls. I also made some efforts to understand the patterning and differentiation of endodermal passage cells in young roots. In the literature, passage cells are defined as a non- suberized xylem pole associated endodermal cells. Since these cells only contain the CS but not the suberin lamellae, it has been assumed that these cells may offer a continued low-resistance pathway for water and minerals into the stele. Thus far, no genes have been found to be expressed specifically in passage cells. In order to understand the patterning, differentiation, and physiological role of passage it would be crucial to identify some genes that are exclusively expressed in these cells. In order to identify such genes, I first generated fluorescent marker lines of stele-expressed transporters that have been reported to be expressed in the passage cells. My aim was to first highlight the passage cells in a non-specific way. In order to find passage cell specific genes I then adapted a two-component system based on previously published methods for gene expression profiling of individual cell types. This approach will allow us to target only the passage cells and then to study gene expression specifically in this cell type. Taken together, this preparatory work will provide an entry point to understand the formation and role of endodermal passage cells. - Chez les plantes vasculaires, la caractéristique la plus commune des cellules différentiées de l'endoderme est la présence de cadres de Caspary. Cette structure correspond à une imprégnation localisée des parties transversales et anticlinales de la paroi cellulaire. Cela donne naissance, autour de la cellule, à un anneau/cadre qui est coordonné par rapport aux cellules voisines. De manière analogue aux jonctions serrées des épithéliums chez les animaux, les cadres de Caspary agissent chez les plantes comme barrière de diffusion, contrôlant le mouvement de l'eau et des ions à travers la racine entre le sol et la stèle. Depuis leur première description par Robert Caspary en 1865, beaucoup de tentatives ont eu pour but de définir la nature chimique de ces cadres de Caspary. Après l'étude de différentes espèces végétales, à la fois la subérine, la lignine ou les deux ont été revendiquées comme étant des composants importants de ces cadres. Malgré tout, leur nature chimique exacte est restée longtemps énigmatique. Cette controverse provient de la confusion et du manque de connaissance concernant la détermination précise des trois stades de développement de l'endoderme. Les cadres de Caspary représentent uniquement le stade primaire de différentiation de l'endoderme. Celui-ci est suivi par le second stade de différentiation, la déposition de lamelles de subérine tout autour de la cellule endodermal. De ce fait, l'analyse chimique de racines entières ou de cellules d'endoderme isolées ne permet pas de séparer les stades de différentiation primaire et secondaire et aboutit donc à la présence des deux polymères. Il est également crucial de clarifier ce point dans le but de connaître quelle machinerie cellulaire localisée à la paroi cellulaire permet l'élaboration des cadres de Caspary. En utilisant les connaissances et les outils accumulés récemment grâce à la plante modèle Arabidopsis thaliana, divers techniques histologiques et chimiques ont été utilisées dans cette étude. Un point particulier de mon travail a été de dégrader ou d'inhiber complètement la formation de lignine ou de subérine en utilisant des approches de génétique classique ou moléculaire. Le but étant d'observer l'effet de l'absence d'un de ces deux polymères sur la formation des cadres de Caspary et l'établissement d'une barrière de diffusion fonctionnelle. De manière frappante, le fait d'interférer avec la voie de biosynthèse de monolignol (monomères de lignine) abolit la formation des cadres de Caspary et retarde l'élaboration d'une barrière de diffusion fonctionnelle. Par contre, des plantes transgéniques dépourvues d'une quantité détectable de subérine sont quant à elles toujours capables de développer des cadres de Caspary fonctionnels. Mises en commun, ces expériences démontrent que le polymère formant les cadres de Caspary dans la partie jeune de la racine est fait de monolignol, et que de ce fait il s'agit de lignine. La subérine, quant à elle, est formée bien plus tard durant le développement de l'endoderme, de plus il s'agit d'une modification de la paroi secondaire. Ces cadres de Caspary précoces faits de lignine suffisent donc à bloquer la diffusion extracellulaire, contrairement à la subérine. De plus, la machinerie de biosynthèse de la subérine n'est pas encore présente au moment de la formation des cadres de Caspary. Notre étude permet donc de mettre un terme au long débat concernant la nature chimique des cadres de Caspary. De plus, elle ouvre la porte à de nouvelles approches dans la recherche sur la lignine, plus particulièrement pour identifier des composants permettant la déposition localisée de ce polymère dans la paroi cellulaire. J'ai aussi fais des efforts pour mettre en évidence la formation ainsi que le rôle des cellules de passage dans les jeunes racines. Dans la littérature, les cellules de passage sont définies comme de la cellule endodermal faisant face aux pôles xylèmes et dont la paroi n'est pas subérisée. Du fait que ces cellules contiennent uniquement des cadres de Caspary et pas de lamelle de subérine, il a été supposé qu'elles ne devraient offrir que peu de résistance au passage de l'eau et des nutriments entre le sol et la stèle. Le rôle de ces cellules de passage est toujours loin d'être clair, de plus aucun gène s'exprimant spécifiquement dans ces cellules n'a été découvert à ce jour. De manière à identifier de tels gènes, j'ai tout d'abord généré des marqueurs fluorescents pour des transporteurs exprimés dans la stèle mais dont l'expression avait également été signalée dans l'endoderme, uniquement dans les cellules de passage. J'ai ensuite développé un système à deux composants basé sur des méthodes déjà publiées, visant principalement à étudier le profil d'expression génique dans un type cellulaire donné. En recoupant les gènes exprimés spécifiquement dans l'endoderme à ceux exprimés dans la stèle et les cellules de passage, il nous sera possible d'identifier le transriptome spécifique de ces cellules. Pris dans leur ensemble, ces résultats devraient donner un bon point d'entrée dans la définition et la compréhension des cellules de passage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vascular plants, the endodermis establishes a protective diffusion barrier surrounding the vasculature preventing the passive, uncontrolled entry of nutrients absorbed by the plant. It does so by means of a differentiation feature, the "Casparian Strip" (CS), a highly localized cell wall impregnation made of lignin, which seals the extracellular space. Although the existence of this differentiation feature has been intensively described, the mechanisms establishing this hallmark remain obscure. In this work I report, the developmental sequence of events that leads to a differentiated endodermis, in the plant model Arabidopsis thaliana. In addition, my descriptive approach gave important insights as to how these cells define membrane domains involved in the directional transport of nutrients. I also participated in characterizing a new transmembrane protein family, the CASPs, localized to the membrane domain underlying the CS, which we accordingly named the Casparian Strip membrane Domain (CSD). Our molecular analysis indicates that these proteins drive CS establishment. To identify more molecular factors of CS establishment, I performed a forward genetic screen. This screen led to the identification of 11 endodermis permissive mutants, which we named schengen (sgn) mutants. The causative mutations have been mapped to 5 independent loci: SGN1 to SGN5. SGN1 and SGN3 encode Receptor Like Kinases involved in the correct establishment of the CSD. A lack of those kinases leads to an incomplete CSD, which gives rise to interrupted CS barriers. Interestingly, SGN1 seems to also regulate CSD positioning to the middle of endodermal transversal walls. SGN4 encodes an NADPH oxidase involved in lignin polymerization essential for CS formation. The sgn5 mutant induces extra divisions of cortical cells strongly affecting the cell identity, but also leading to incorrect differentiation. A thorough characterization of the sgn2 mutant will follow elsewhere, yet preliminary results indicate that SGN2 encodes an Acyl-CoA N-acyltransferase. . In summary, with my work I have contributed a first set of molecular players of Casparian strip formation and initiated their characterization. Eventually, this might lead to an understanding of the molecular mechanisms of CS establishment in A.thaliana . This in turn will hopefully help to better understand nutrient uptake in higher plants and their response to environmental stresses. - Au sein des plantes vasculaires, l'endoderme représente un tissu protecteur mettant en place une barrière imperméable, empêchant n'importe quel élément de rejoindre les tissus conducteurs par simple diffusion. Cette barrière, appelée « Cadre de Caspary », correspond à une lignification de la paroi de l'endoderme et donne lieu à un cloisonnement de l'espace intercellulaire. Bien que cet élément de différenciation soit décrit en détail, sa mise en place reste incomprise. Cette étude indique la suite d'événements aboutissant à l'établissement du cadre de Caspary chez la plante modèle Arabidopsis thaliana. De plus, ce travail apporte de nouvelles connaissances expliquant comment ces cellules définissent des domaines membranaires importants pour le transport des nutriments. Nous décrivons une nouvelle famille de protéines membranaires, les CASPs (« CAparian Strip membrane domain Proteins »), localisées dans un domaine membranaire longeant le cadre de Caspary : le domaine de Caspary (CSD). L'analyse moléculaire des CASPs indique qu'elles dirigent la formation du cadre de Caspary. Par ailleurs, une approche génétique directe nous a permis d'identifier 11 mutants ayant un endoderme perméable. Nous avons nommé ces mutants Schengen, en référence à la zone de libre échange européenne. Les mutations impliquées dans ces mutants affectent 5 gènes désignés de SGN1 à SGN5. SGN1 et SGN3 produisent des protéines de type kinases (« Receptor-like Kinases », RLK) qui participent à la délimitation du CSD. L'absence de ces kinases aboutit à un domaine CSD incomplet, se traduisant par un cadre de Caspary discontinu. De plus, SGN1 semble réguler le positionnement du CSD au milieu de la paroi transversale de l'endoderme. SGN4 produit une enzyme de type NADPH oxydase impliquée dans la polymérisation du cadre de Caspary. Dans le mutant sgn5, on observe une division anormale des cellules du cortex créant ainsi une nouvelle couche cellulaire incapable d'achever sa différenciation en endoderme. Quant à la mutation sgn2, bien que nous pensons qu'elle affecte une Acyl-CoA N-acyltransferase, sa caractérisation ne sera réalisée que prochainement. Au final, ce travail procure de nouveaux éléments sur l'établissement du cadre de Caspary qui pourraient être importants afin de comprendre comment les plantes sélectionnent leurs nutriments et résistent à des conditions environnementales parfois hostiles. - De par leur immobilité, les plantes terrestres n'ont pas d'autre choix que de puiser leurs ressources dans leur environnement direct. La plante extrait du sol les nutriments qui lui sont nécessaires et les redistribue grâce à des tissus conducteurs. Afin de ne pas s'intoxiquer, il est donc essentiel de pouvoir sélectionner les éléments entrant dans la racine. Etonnement, ce n'est pas la surface des racines qui permet ce contrôle mais un tissu interne appelé endoderme. Ce dernier forme une barrière imperméable qui entoure chaque cellule et crée une jointure permettant de bloquer le passage des éléments entre les cellules. Cette structure, appelée « cadre de Caspary », oblige les éléments à entrer dans les cellules de l'endoderme et à être ainsi sélectionnés. Bien que cette structure soit décrite en détail, sa mise en place reste incomprise. Cette étude indique la suite d'événements qui aboutit à la formation du cadre de Caspary chez la plante modèle Arabidopsis thaliana. Ce travail apporte également de nouvelles connaissances expliquant comment ces cellules définissent, organisent et dirigent le transport des nutriments. Nous décrivons comment certains éléments de la cellule, les protéines CASPs (CAsparian Strip membrane domain Proteins), sont organisées un domaine particulier des membranes afin de créer une plateforme de construction longeant le cadre de Caspary : le domaine de Caspary (CSD). Afin de déterminer ce qu'il se passerait si une plante ne possédait pas de cadre de Caspary, nous avons réalisé une mutagénèse, ou approche génétique directe, et identifié 11 mutants (individu ayant un gène défectueux conduisant à la perte d'une fonction) ayant un endoderme perméable. Nous avons nommé ces mutants schengen, en référence à la zone de libre échange européenne. Les mutations impliquées dans ces mutants affectent 5 gènes désignés de SGN1 à SGN5. Les gènes SGN1 et SGN3 produisent des protéines de type kinases (« Receptor-like Kinases », RLK) servant à l'établissement de la plateforme de construction. L'absence de ces kinases aboutit à une base incomplète, se traduisant par un cadre de Caspary discontinu. Qui plus est, la kinase SGN1 semble réguler le positionnement de la plateforme au milieu de l'endoderme. Le gène SGN4 est par contre, impliqué dans la construction à proprement dite du cadre de Caspary. Dans le mutant sgn5, on observe une nouvelle couche de cellules ressemblant à de l'endoderme mais incapable de former correctement une barrière identique au cadre de Caspary. Quant au dernier mutant, sgn2, bien que cette étude fournisse des indices permettant de comprendre pourquoi le mutant sgn2 est défectueux, nous n'expliquerons ce cas que prochainement. En résumé, ce travail procure de nouvelles connaissances sur l'établissement du cadre de Caspary qui pourraient être importantes afin de comprendre comment les plantes sélectionnent leurs nutriments et résistent à des conditions environnementales parfois hostiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The endodermis is a highly conserved cell layer present in the root of all vascular plants, except Lycophytes. This tissue layer establishes a protective diffusion barrier surrounding the vasculature and is expected to prevent passive, uncontrolled flow of nutrients through the root. This barrier property is achieved by the production of Casparian strips (CS), a localized cell wall impregnation of lignin in the anticlinal walls of each endodermal cell, forming a belt-like structure sealing the extracellular space. The CS act as a selective barrier between the external cell layers and the vascular cylinder and are thought to be important in many aspects of root function. For instance, selective nutrient uptake and sequestration from the soil, resistance to different abiotic and biotic stresses are expected to involve functional CS. Although discovered 150 years ago, nothing was known about the genes involved in CS establishment until recently. The use of the model plant Arabidopsis thaliana together with both reverse and forward genetic approaches led to the discovery of an increasing number of genes involved in different steps of CS formation during the last few years. One of these genes encodes SCHENGEN3 (SGN3), a leucine-rich repeat receptor-like kinase (LRR-RLK). SGN3 was discovered first by reverse genetic due to its endodermis-enriched expression, and the corresponding mutant displays strong endodermal permeability of the apoplastic tracer Propidium Iodide (PI) indicative of defective CS. One aim of this thesis is to study the role of SGN3 at the molecular level in order to understand its involvement in establishing an impermeable CS. The endodermal permeability of sgn3 is shown to be the result of incorrect localization of key proteins involved in CS establishment (the "Casparian strip domain proteins", CASPs), leading to non-functional CS interrupted by discontinuities. CASPs localize in the plasma membrane domain subjacent to the CS, named the Casparian Strip membrane Domain (CSD). The CSD discontinuities in sgn3 together with SGN3 localization in close proximity to the CASPs lead to the assumption that SGN3 is involved in the formation of a continuous CSD. In addition, SGN3 might have a second role, acting as a kinase reporting CSD integrity leading to lignin and suberin production in CSD/CS defective plants. Up to now, sgn3 is the strongest and most specific CS mutant available, displaying tracer penetration along the whole length of the seedling root. For this reason, this mutant is well suited in order to characterize the physiological behaviour of CS affected plants. Due to the lack of such mutants in the past, it was not possible to test the presumed functions of CS by using plants lacking this structure. We decided to use sgn3 for this purpose. Surprisingly, sgn3 overall growth is only slightly affected. Nevertheless, processes expected to rely on functional CS, such as water transport through the root, nutrient homeostasis, salt tolerance and resistance to an excess of some nutrients are altered in this mutant. On the other hand, homeostasis for most elements and drought tolerance are not affected in sgn3. It is surprising to observe that homeostatic defects are specific, with a decrease in potassium and an increase in magnesium levels. It indicates a backup system, set up by the plant in order to counteract free diffusion of nutrients into the stele. For instance, potassium shortage in sgn3 upregulates the transcription of potassium influx transport proteins and genes known to be induced by potassium starvation. Moreover, sgn3 mutant is hypersensitive to low potassium conditions. Hopefully, these results about SGN3 will help our understanding of CS establishment at the molecular level. In addition, physiological experiments using sgn3 should give us a framework for future experiments and help us to understand the different roles of CS and their involvement during nutrient radial transport through the root. -- L'endoderme est un tissu présent dans les racines de toutes les plantes vasculaires à l'exception des Lycophytes. Ce tissu établit une barrière protectrice entourant les tissus vasculaires dans le but d'éviter la diffusion passive et incontrôlée des nutriments au travers de la racine. Cette propriété de barrière provient de la production des cadres de Caspary, une imprégnation localisée de lignine des parties anticlinales de la paroi de chaque cellule d'endoderme. Cela donne naissance à un anneau/cadre qui rend étanche l'espace extracellulaire. Les cadres de Caspary agissent comme une barrière sélective entre les couches externes de la racine et le cylindre central et sont supposés être importants dans beaucoup d'aspects du fonctionnement de la racine. Par exemple, l'absorption sélective de nutriments et leur séquestration à partir du sol ainsi que la résistance contre différents stress abiotiques et biotiques sont supposés impliquer des cadres de Caspary fonctionnels. Bien que découverts il y a 150 ans, rien n'était connu concernant les gènes impliqués dans Ja formation des cadres de Caspary jusqu'à récemment. Durant ces dernière années, l'utilisation de la plante modèle Arabidopsis thaliana ainsi que des approches de génétique inverse et classique ont permis la découverte d'un nombre croissant de gènes impliqués à différentes étapes de la formation de cette structure. Un des ces gènes code pour SCHENGEN3 (SGN3), un récepteur kinase "leucine-rich repeat receptor-like kinase" (LRR-RLK). SGN3 a été découvert en premier par génétique inverse grâce à son expression enrichie dans l'endoderme. Les cadres de Caspary ne sont pas fonctionnels dans le mutant correspondant, ce qui est visible à cause de la perméabilité de l'endoderme au traceur apoplastique Propidium Iodide (PI). Un des objectifs de cette thèse est d'étudier la fonction de SGN3 au niveau moléculaire dans le but de comprendre son rôle dans la formation des cadres de Caspary. J'ai pu démontrer que la perméabilité de l'endoderme du mutant sgn3 est le résultat de la localisation incorrecte de protéines impliquées dans la formation des cadres de Caspary, les "Casparian strip domain proteins" (CASPs). Cela induit des cadres de Caspary non fonctionnels, contenant de nombreuses interruptions. Les CASPs sont localisés à la membrane plasmique dans un domaine sous-jacent les cadres de Caspary appelé Casparian Strip membrane Domain (CSD). Les interruptions du CSD dans le mutant sgn3, ainsi que la localisation de SGN3 à proximité des CASPs nous font penser à un rôle de SGN3 dans l'élaboration d'un CSD ininterrompu. De plus, SGN3 pourrait avoir un second rôle, agissant en tant que kinase reportant l'intégrité du CSD et induisant la production de lignine et de subérine dans des plantes contenant des cadres de Caspary non fonctionnels. Jusqu'à ce jour, sgn3 est le mutant en notre possession le plus fort et le plus spécifique, ayant un endoderme perméable tout le long de la racine. Pour cette raison, ce mutant est adéquat dans le but de caractériser la physiologie de plantes ayant des cadres de Caspary affectés. De manière surprenante, la croissance de sgn3 est seulement peu affectée. Néanmoins, des processus censés nécessiter des cadres de Caspary fonctionnels, comme le transport de l'eau au travers de la racine, l'homéostasie des nutriments, la tolérance au sel et la résistance à l'excès de certains nutriments sont altérés dans ce mutant. Malgré tout, l'homéostasie de la plupart des nutriments ainsi que la résistance au stress hydrique ne sont pas affectés dans sgn3. De manière surprenante, les altérations de l'ionome de sgn3 sont spécifiques, avec une diminution de potassium et un excès de magnésium. Cela implique un système de compensation établi par la plante dans le but d'éviter la diffusion passive des nutriments en direction du cylindre central. Par exemple, le manque de potassium dans sgn3 augmente la transcription de transporteurs permettant l'absorption de cet élément. De plus, des gènes connus pour être induits en cas de carence en potassium sont surexprimés dans sgn3 et la croissance de ce mutant est sévèrement affectée dans un substrat pauvre en potassium. Ces résultats concernant SGN3 vont, espérons-le, aider à la compréhension du processus de formation des cadres de Caspary au niveau moléculaire. De plus, les expériences de physiologie utilisant sgn3 présentées dans cette thèse devraient nous donner une base pour des expériences futures et nous permettre de comprendre mieux le rôle des cadres de Caspary, et plus particulièrement leur implication dans le transport radial des nutriments au travers de la racine. -- Les plantes terrestres sont des organismes puisant l'eau et les nutriments dont elles ont besoin pour leur croissance dans le sol grâce à leurs racines. De par leur immobilité, elles doivent s'adapter à des sols contenant des quantités variables de nutriments et il leur est crucial de sélectionner ce dont elles ont besoin afin de ne pas s'intoxiquer. Cette sélection est faite grâce à un filtre formé d'un tissu racinaire interne appelé endoderme. L'endoderme fabrique une barrière imperméable entourant chaque cellule appelée "cadre de Caspary". Ces cadres de Caspary empêchent le libre passage des nutriments, permettant un contrôle précis de leur passage. De plus, ils sont censés permettre de résister contre différents stress environnementaux comme la sécheresse, la salinité du sol ou l'excès de nutriments. Bien que découverts il y a 150 ans, rien n'était connu concernant les gènes impliqués dans la formation des cadres de Caspary jusqu'à récemment. Durant ces dernière années, l'utilisation de la plante modèle Arabidopsis thaliana a permis la découverte d'un nombre croissant de gènes impliqués à différentes étapes de la formation de cette structure. Un de ces gènes code pour SCHENGEN3 (SGN3), un récepteur kinase "leucine-rich repeat receptor-like kinase" (LRR- RLK). Nous montrons dans cette étude que le gène SGN3 est impliqué dans la formation des cadres de Caspary, et que le mutant correspondant sgn3 a des cadres de Caspary interrompus. Ces interruptions rendent l'endoderme perméable, l'empêchant de bloquer le passage des molécules depuis le sol vers le centre de la racine. En utilisant ce mutant, nous avons pu caractériser la physiologie de plantes ayant des cadres de Caspary affectés. Cela a permis de découvrir que le transport de l'eau au travers de la racine était affecté dans le mutant sgn3. De plus, l'accumulation de certains éléments dans les feuilles de ce mutant est altérée. Nous avons également pu montrer une sensibilité de ce mutant à un excès de sel ou de certains nutriments comme le fer et le manganèse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multicellular organisms rely on specialized tissues that allow for the controlled exchange of matter with their surrounding. In order to function properly, these tissues need to establish a tight connection between the individual cells to prevent uncontrolled passive diffusion across the extracellular space. In animals, these connections are called tight and adherens junctions and are a critical feature of epithelia. These connections, however, rely on direct protein-protein interaction of plasma membrane proteins of adjacent cells. Such a mechanism is not possible in plants due to the cell wall, which encases the individual cells. In order to absorb nutrients, while simultaneously preventing uncontrolled diffusion between cells, land plants have evolved the root endodermis, which is functionally equivalent to animal epithelia. Its cells are surrounded by a precisely localized and aligned, ring-like lignin deposition, called the Casparian strip, and therefore tightly connected between each other. Very little was known about the development of the endodermis and the Casparian strip until recently. In the meantime, however, we have identified a family of endodermis- specific proteins, the CASPs, which recruits extracellular proteins the specific Casparian strip membrane domain (CSD) to locally synthesize lignin in the cell wall. Yet, we hardly knew any specifics on how the CSD is initially defined and how the critically important CASPs are being recruited to it. We therefore conducted a forward genetic screen on the localization of CASPI-GFP in order to identify novel mutants, which lack a defined CSD. We identified 48 mutants, which fell into 15 different complementation groups. While some of the isolated genes had previously been identified through different approaches, nine novel genes, which had never been implicated in CSD development and maintenance, were identified. One of them, LORD OF THE RINGS 2 (.LOTR2) is described to greater detail in this work. LOTR2 encodes for EX070A1, a protein of the evolutionary conserved exocyst complex. This complex has frequently been implicated in various secretory processes across kingdoms. In Arabidopsis, it transiently defines the positioning of CASPI-GFP. We have performed a detailed analysis of the dynamics of EX070A1 and CASPI-GFP, including studies with other markers and propose a mechanism, by which the cytosolic EX070A1 transiently defines a plasma membrane domain to recruit transmembrane proteins, which then recruit extracellular enzymes for localized cell wall modification. Considering the ubiquitous expression of EX070A1, we think that this mechanism is potentially of importance not only for the endodermis and the Casparian strip but also for many other tissues, in which the cell wall becomes locally modified. In fact, many other tissues with secondary cell wall modifications contain proteins very similar to the CASPs. It will be interesting to see to which degree this mechanism is employed in other tissues. As for the endodermis, we have now identified the first gene, which is not specific to the endodermis but shows endodermis-specific dynamics. This might give us a better insight on how the plant modulates this ubiquitously present factor in a cell- or tissue-type specific manner. Considering the knowledge, mutants and tools, which are available to us for investigating the endodermis, the Casparian strip, the exocyst complex and EX070A1 might be just the right experimental system to address these questions. -- Les organismes multicellulaires dépendent des tissues spécialisé pour l'échange contrôlé entre eux et leur environnement. Pour leur bon fonctionnement, les cellules de ces tissus ont besoin d'être très étroitement assemblés afin de prévenir la diffusion non-contrôlée à travers l'espace extracellulaire. Chez les animaux, ces connexions sont appelées jonctions serrées et jonctions adhérentes. Ces jonctions dépendent des interactions directes entre les protéines des cellules voisines. Ceci n'est pas possible chez les plantes à cause de la paroi cellulaire qui recouvre chaque cellule individuellement. Pour absorber les nutriments et en même temps empêcher la diffusion non-contrôlé entre cellules, les plantes ont évolué 1'endoderme dans la racine, qui est fonctionnellement équivalent aux épithéliums des animaux. Les cellules de l'endoderme sont ceinturées par une déposition de lignine très précisément localisées comme un anneau et alignées entre les cellules, et qui, donc, connecte étroitement les cellules avoisinante: Le cadre de Caspary. Peu était connu sur le développement de l'endoderme et le cadre de Caspaiy jusqu'à il y a quelques années. Récemment, pourtant, nous avons identifié une famille de protéines spécifiques à l'endoderme, les CASPs, qui définissent le domaine membranaire du cadre de Caspaiy (CSD). Les CASPs recrutent les protéines extracellulaires nécessaire à la synthèse du cadre de Caspary vers une région limité dans la paroi cellulaire. Pourtant, on connaît très peu les processus spécifiques concernant la définition initiale du CSD et comment les CASPs, qui ont une importance cruciale, sont recrutées vers ce domaine. Par conséquent nous avons mené un crible génétique sur la localisation du CASPI- GFP, qui sert comme marqueur pour le CSD. Notre but étant d'isoler de nouveaux mutants affectés dans l'établissement du CSD. Nous avons identifié 48 mutants, en 15 groupes de complémentation. Bien que certains des gènes isolés étaient déjà impliqué dans la formation du cadre de Caspary, neuf nouveaux gènes n'ayant jamais été impliqués dans le développement ou la maintenance du CSD ont pu être identifiés. Un de ces gènes, LORD OF THE RINGS2 (LOTR2) sera décrit plus en détail dans cette étude. LOTR2 code pour EX070A1, qui est une protéine, du complexe exocyste. Ce complexe de protéines a très bien été conservé au cours de l'évolution. Il était souvent impliqué dans plusieurs processus de sécrétion dans toutes les branches de la vie. Chez Arabidopsis, EX070A1 définit la position du CSD d'une façon transitoire et recrute CASP1- GFP. Nous avons mené une analyse détaillée des dynamiques d'EX070Al et CASPI-GFP ainsi que, des études avec des autres mutants. Nous proposons un mécanisme, d'après lequel EX070A1, recruté du cytosol, définit un domaine dans la membrane plasmique pour localiser des protéines transmembranaires, ces dernières ensuite recruteront des enzymes extracellulaires pour la modification locale de la paroi cellulaire. Vu qu'EX070A1 est exprimé dans toute dans la plante, nous pensons que ce mécanisme est potentiellement important non seulement pour l'endoderme et le cadre de Caspary, mais aussi pour les autres tissus où la paroi cellulaire doit être localement modifiée. En effet, plusieurs autres tissus contiennent des protéines très similaires aux CASPs. Il serait intéressant de voir à quelle dégrée ce mécanisme est également utilisé dans ces tissues. En ce qui concerne l'endoderme, nous avons maintenant identifié le premier gène qui n'est pas exprimé spécifiquement dans l'endoderme, mais qui montre tout de même une dynamique caractéristique dans ce tissu. Il serait intéressant de voir comment la plante peut moduler ce facteur omniprésent d'une façon spécifique. Vu les connaissances, les mutants et les outils qu'on a maintenant à notre disposition, l'endoderme et son cadre de Caspary, le complexe exocyste et EX070A1 sont probablement des bons systèmes expérimentaux pour étudier ces questions. -- Identification des nouveaux facteurs pendant l'établissement du cadre de Caspary dans l'endoderme. Lothar Kalmbach, Département de Biologie Moléculaire Végétale (DBMV), Université de Lausanne. Comme tous les autres organismes multicellulaires, les plantes terrestres dépendent de tissus spécialisés pour l'échange contrôlé avec leur environnement. Ces tissus sont importants pour l'absorption des nutriments mais également pour éviter l'influx de composés toxiques. Chez les plantes, ce tissu se trouve dans la racine. C'est l'endoderme. Grâce au cadre de Caspary, qui permet une forte connexion entre les cellules au niveau de leur paroi, l'endoderme empêche les éléments toxiques d'entrer dans le système vasculaire. Depuis quelques années, nous comprenons de plus en plus la nature et la biosynthèse, ainsi que les protéines impliquées dans l'ancrage des enzymes à la membrane plasmique. Nous n'avons eu, par contre, aucune idée sur le mécanisme qui d'abord définit cet endroit dans la membrane plasmique. Nous avons mené un crible génétique sur la localisation de CASPI-GFP, une protéine, qui recrute les enzymes extracellulaires pour la synthèse du cadre de Caspary. Nous avons identifié plusieurs nouveaux gènes qui sont impliqués dans l'intégrité du cadre de Caspary. L'un de ces gènes est EX070A1, qui est un facteur ayant un rôle important lors de la sécrétion des protéines dans tous les organismes eukaryotes. Ces mutants sont gravement affectés au niveau du cadre de Caspary, mais surtout ils ne sont plus capables de localiser CASPI-GFP. Nous avons suivi la dynamique d'EX070Al et de CASP1-GFP en combinaison avec d'autres marqueurs. Nous avons pu montrer que l'accumulation d'EX070Al est spécifique pour l'endoderme et essentielle pour bien localiser CASPI-GFP et donc, le cadre de Caspary. Ces résultats nous aident à mieux comprendre le développement de l'endoderme mais peuvent potentiellement aussi être utilisés pour étudier les modifications de la paroi cellulaire dans d'autres cellules de la plante.