28 resultados para entry
em Université de Lausanne, Switzerland
Resumo:
Summary : Internal ribosome entry sites (IRES) are used by viruses as a strategy to bypass inhibition of cap-dependent translation that commonly results from viral infection. IRES are also used in eukaryotic cells to control mRNA translation under conditions of cellular stress (apoptosis, heat shock) or during the G2 phase of the cell cycle when general protein synthesis is inhibited. Variation in cellular expression levels has been shown to be inherited. Expression is controlled, among others, by transcriptional factors and by the efficiency of cap-mediated translation and ribosome activity. We aimed at identifying genomic determinants of variability in IRES-mediated translation of two representative IRES [Encephalomyocarditis virus (EMCV) and X-linked Inhibitor-of-Apoptosis (XIAP) IRES]. We used bicistronic lentiviral constructions expressing two fluorescent reporter transgenes. Lentiviruses were used to transduce seven different laboratory cell lines and B lymphoblastoid cell lines from the Centre d'Etude du Polymorphisme Humain (CEPH; 15 pedigrees; n=209); representing an in vitro approach to family structure allowing genome scan analyses. The relative expression of the two markers was assessed by FACS. IRES efficiency varies according to cellular background, but also varies, for a same cell type, among individuals. The control of IRES activity presents an inherited component (h2) of 0.47 and 0.36 for EMCV and XIAP IRES, respectively. A genome scan identified a suggestive Quantitative Trait Loci (LOD 2.35) involved in the control of XIAP IRES activity. Résumé : Les sites internes d'entrée des ribosomes (IRES = internal ribosome entry sites) sont utilisés par les virus comme une stratégie afin d'outrepasser l'inhibition de traduction qui résulte communément d'une infection virale. Les IRES sont également utilisés par les cellules eucaryotes pour contrôler la traduction de l'ARN messager dans des conditions de stress cellulaire (apoptose, choc thermique) ou durant la phase G2 du cycle cellulaire, situations durant lesquelles la synthèse générale des protéines est inhibée. La variation des niveaux d'expression cellulaire de transcription est un caractère héréditaire. L'expression des gènes est contrôlée entre autre par les facteurs de transcription et par l'efficacité de la traduction initiée par la coiffe ainsi que par l'activité des ribosomes. Durant cette étude nous avons eu pour but d'identifier les déterminants génomiques responsables de la variabilité de la traduction contrôlée par l'IRES. Ceci a été effectué en étudiant deux IRES représentatifs : l'IRES du virus de l'encéphalomyocardite (EMCV) et l'IRES de l'inhibiteur de l'apoptose XIAP (X-linked Inhibitor-of-Apoptosis). Nous avons utilisés des lentivirus délivrant un transgène bicistronique codant pour deux gènes rapporteurs fluorescents. Ces lentivirus ont été utilisés pour transduire sept différentes lignées cellulaires de laboratoire et des lignées cellulaires lymphoblastoïdes B du Centre d'Etude du Polymorphisme Humain (CEPH; 15 pedigrees; n=209) qui représentent une approche in vitro de la structure familiale et qui permettent des analyses par balayage du génome. L'expression relative des deux marqueurs fluorescents a été analysée par FACS. Nos résultats montrent que l'efficacité des IRES varie en fonction du type de cellules. Il varie aussi, pour le même type de cellules, selon les individus. Le contrôle de l'activité de l'IRES est un caractère héritable (héritabilité h2) de 0.47 et 0.36 pour les IRES de EMCV et XIAP respectivement. Le balayage du génome a permis l'identification d'un locus à effets quantitatifs [QTL Quantitative Trait Loci (LOD 2.35)] impliqué dans le contôle de l'activité de l'IRES de XIAP.
Resumo:
The acute blood pressure response to an angiotensin converting enzyme inhibitor (enalaprilat) was compared in patients with uncomplicated essential hypertension with that obtained under similar conditions with a calcium entry blocker (nifedipine). The patients were studied after a 3 week washout period. At a 48 h interval, each patient received in randomized order either enalaprilat (5 mg i.v.) or nifedipine (10 mg p.o.). Enalaprilat and nifedipine were equally effective in acutely lowering blood pressure. However, good responders to one agent were not necessarily good responders to the other.
Resumo:
Arenaviruses are a large and diverse family of viruses that merit significant attention as causative agents of severe hemorrhagic fevers in humans. Lassa virus (LASV) in Africa and the South American hemorrhagic fever viruses Junin (JUNV), Machupo (MACV), and Guanarito (GTOV) have emerged as important human pathogens and represent serious public health problems in their respective endemic areas. A hallmark of fatal arenaviruses hemorrhagic fevers is a marked immunosuppression of the infected patients. Antigen presenting cells (APCs) such as macrophages and in particular dendritic cells (DCs) are early and preferred targets of arenaviruses infection. Instead of being recognized and presented as foreign antigens by DCs, arenaviruses subvert the normal mechanisms of pathogen recognition, invade DCs and establish a productive infection. Viral replication perturbs the DCs' ability to present antigens and to activate T and B cells, contributing to the marked virus-induced immunosuppression observed in fatal disease. Considering their crucial role in the development of an anti-viral immune response, the mechanisms by which arenaviruses, and in particular LASV, invade DCs are of particular interest. The C-type lectin DC-specific Intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) was recently identified as a potential entry receptor for LASV. The first project of my thesis focused therefore on the investigation of the role of DC-SIGN in LASV entry into primary human DCs. My data revealed that DC-SIGN serves as an attachment factor for LASV on human DCs and can facilitate capture of free virus and subsequent cell entry. However, in contrast to other emerging viruses, of the phlebovirus family, I found that DC-SIGN does likely not function as an authentic entry receptor for LASV. Moreover, I was able to show that LASV enters DCs via an unusually slow pathway that depends on actin, but is independent of clathrin and dynamin. Considering the lack of effective treatments and the limited public health infrastructure in endemic regions, the development of protective vaccines against arenaviruses is an urgent need. To address this issue, the second project of my thesis aimed at the development of a novel recombinant arenavirus vaccine based on a nanoparticle (NPs) platform and its evaluation in a small animal model. During the first phase of the project I designed, produced, and characterized suitable vaccine antigens. In the second phase of the project, I generated antigen-conjugated NPs, developed vaccine formulations, and tested the NPs for their ability to elicit anti-viral T cell responses as well as anti-viral antibodies. I demonstrated that the NPs platform is able to activate both cellular and humoral branches of the adaptive anti-viral immunity, providing proof-of-principle. In sum, my first project will allow, in a long term perspective, a better understanding of the viral pathogenesis and contribute to the development of novel antiviral strategies. The second project will expectidly offer a new treatment option against arenaviruses.
Resumo:
OBJECTIVE: To assess the change in non-compliant items in prescription orders following the implementation of a computerized physician order entry (CPOE) system named PreDiMed. SETTING: The department of internal medicine (39 and 38 beds) in two regional hospitals in Canton Vaud, Switzerland. METHOD: The prescription lines in 100 pre- and 100 post-implementation patients' files were classified according to three modes of administration (medicines for oral or other non-parenteral uses; medicines administered parenterally or via nasogastric tube; pro re nata (PRN), as needed) and analyzed for a number of relevant variables constitutive of medical prescriptions. MAIN OUTCOME MEASURE: The monitored variables depended on the pharmaceutical category and included mainly name of medicine, pharmaceutical form, posology and route of administration, diluting solution, flow rate and identification of prescriber. RESULTS: In 2,099 prescription lines, the total number of non-compliant items was 2,265 before CPOE implementation, or 1.079 non-compliant items per line. Two-thirds of these were due to missing information, and the remaining third to incomplete information. In 2,074 prescription lines post-CPOE implementation, the number of non-compliant items had decreased to 221, or 0.107 non-compliant item per line, a dramatic 10-fold decrease (chi(2) = 4615; P < 10(-6)). Limitations of the computerized system were the risk for erroneous items in some non-prefilled fields and ambiguity due to a field with doses shown on commercial products. CONCLUSION: The deployment of PreDiMed in two departments of internal medicine has led to a major improvement in formal aspects of physicians' prescriptions. Some limitations of the first version of PreDiMed were unveiled and are being corrected.
Resumo:
BACKGROUND: Tumor necrosis factor/tumor necrosis factor receptor superfamily members conform a group of molecular interaction pathways of essential relevance during the process of T-cell activation and differentiation toward effector cells and particularly for the maintenance phase of the immune response. Specific blockade of these interacting pathways, such as CD40-CD40L, contributes to modulate the deleterious outcome of allogeneic immune responses. We postulated that antagonizing the interaction of LIGHT expression on activated T cells with its receptors, herpesvirus entry mediator and lymphotoxin β receptor, may decrease T cell-mediated allogeneic responses. METHODS: A flow cytometry competition assay was designed to identify anti-LIGHT monoclonal antibodies capable to prevent the interaction of mouse LIGHT with its receptors expressed on transfected cells. An antibody with the desired specificity was evaluated in a short-term in vivo allogeneic cytotoxic assay and tested for its ability to detect endogenous mouse LIGHT. RESULTS: We provide evidence for the first time that in mice, as previously described in humans, LIGHT protein is rapidly and transiently expressed after T-cell activation, and this expression was stronger on CD8 T cells than on CD4 T cells. Two anti-LIGHT antibodies prevented interactions of mouse LIGHT with its two known receptors, herpesvirus entry mediator and lymphotoxin β receptor. In vivo administration of anti-LIGHT antibody (clone 10F12) ameliorated host antidonor short-term cytotoxic response in wild type B6 mice, although to a lesser extent than that observed in LIGHT-deficient mice. CONCLUSION: The therapeutic targeting of LIGHT may contribute to achieve a better control of cytotoxic responses refractory to current immunosuppressive drugs in transplantation.
Resumo:
Inflammatory mediators induce neuropeptide release from nociceptive nerve endings and cell bodies, causing increased local blood flow and vascular leakage resulting in edema. Neuropeptide release from sensory neurons depends on an increase in intracellular Ca2+ concentration. In this study we investigated the role of two types of pH sensors in acid-induced Ca2+ entry and neuropeptide release from dorsal root ganglion (DRG) neurons. The transient receptor potential vanilloid 1 channel (TRPV1) and acid-sensing ion channels (ASICs) are both H+-activated ion channels present in these neurons, and are therefore potential pH sensors for this process. We demonstrate with in situ hybridization and immunocytochemistry that TRPV1 and several ASIC subunits are co-expressed with neuropeptides in DRG neurons. Activation of ASICs and of TRPV1 led to an increase in intracellular Ca2+ concentration. While TRPV1 has a high Ca2+ permeability and allows direct Ca2+ entry when activated, we show here that ASICs of DRG neurons mediate Ca2+ entry mostly by depolarization-induced activation of voltage-gated Ca2+ channels and only to a small extent via the pore of Ca2+-permeable ASICs. Extracellular acidification led to release of the neuropeptide calcitonin gene-related peptide from DRG neurons. The pH dependence and the pharmacological profile indicated that TRPV1, but not ASICs, induced neuropeptide secretion. In conclusion, this study shows that although both TRPV1 and ASICs mediate Ca2+ influx, TRPV1 is the principal sensor for acid-induced neuropeptide secretion from sensory neurons.
Resumo:
We argue that attitudes about immigration can be better understood by paying closer attention to the various ways in which national group boundaries are demarcated. We describe two related lines of work that address this. The first deals with national group definitions and, based on evidence from studies carried out in England and analyses of international survey data, argues that the relationship between national identification and prejudice toward immigrants is contingent on the extent to which ethnic or civic definitions of nationality are endorsed. The second, which uses European survey data, examines support for ascribed and acquired criteria that can be applied when determining who is permitted to migrate to one's country, and the various forms of national and individual threat that affect support for these criteria. We explain how the research benefits from a multilevel approach and also suggest how these findings relate to some current policy debates.
Resumo:
The extracellular matrix (ECM) receptor dystroglycan (DG) serves as a cellular receptor for the highly pathogenic arenavirus Lassa virus (LASV) that causes a haemorrhagic fever with high mortality in human. In the host cell, DG provides a molecular link between the ECM and the actin cytoskeleton via the adapter proteins utrophin or dystrophin. Here we investigated post-translational modifications of DG in the context of LASV cell entry. Using the tyrosine kinase inhibitor genistein, we found that tyrosine kinases are required for efficient internalization of virus particles, but not virus-receptor binding. Engagement of cellular DG by LASV envelope glycoprotein (LASV GP) in human epithelial cells induced tyrosine phosphorylation of the cytoplasmic domain of DG. LASV GP binding to DG further resulted in dissociation of the adapter protein utrophin from virus-bound DG. This virus-induced dissociation of utrophin was affected by genistein treatment, suggesting a role of receptor tyrosine phosphorylation in the process.
Resumo:
OBJECTIVES: Gender differences in psychotic disorder have been observed in terms of illness onset and course; however, past research has been limited by inconsistencies between studies and the lack of epidemiological representative of samples assessed. Thus, the aim of this study was to elucidate gender differences in a treated epidemiological sample of patients with first episode psychosis (FEP). METHODS: A medical file audit was used to collect data on premorbid, entry, treatment and 18-month outcome characteristics of 661 FEP consecutive patients treated at the Early Psychosis Prevention and Intervention Centre (EPPIC), Melbourne, Australia. RESULTS: Prior to onset of psychosis, females were more likely to have a history of suicide attempts (p=.011) and depression (p=.001). At service entry, females were more likely to have depressive symptoms (p=.007). Conversely, males had marked substance use problems that were evident prior to admission (p<.001) and persisted through treatment (p<.001). At service entry, males also experienced more severe psychopathology (p<.001) and lower levels of functioning (GAF, p=.008; unemployment/not studying p=.004; living with family, p=.003). Treatment non-compliance (p<.001) and frequent hospitalisations (p=.047) were also common for males with FEP. At service discharge males had significantly lower levels of functioning (GAF, p=.008; unemployment/not studying p=.040; living with family, p=.001) compared to females with FEP. CONCLUSIONS: Gender differences are evident in illness course of patients with FEP, particularly with respect to past history of psychopathology and functioning at presentation and at service discharge. Strategies to deal with these gender differences need to be considered in early intervention programs.
Resumo:
The signaling pathway that regulates glucose-stimulated insulin secretion depends on glucose metabolism, which is itself controlled by glucokinase. In a recent issue of Cell, show that altering N-glycosylation of the GLUT2 glucose transporter prevents its anchoring and retention at the cell surface; this impairs glucose uptake and insulin secretion.
Resumo:
Pharmacological treatment of hypertension is effective in preventing cardiovascular and renal complications. Calcium antagonists (CAs) and blockers of the renin-angiotensin system [angiotensin-converting enzyme (ACE) inhibitors and angiotensin II antagonists (ARBs)] are widely used today to initiate antihypertensive treatment but, when given as monotherapy, do not suffice in most patients to normalise blood pressure (BP). Combining a CA and either an ACE-inhibitor or an ARB considerably increases the antihypertensive efficacy, but not at the expense of a deterioration of tolerability. Several fixed-dose combinations are available (CA + ACE-inhibitors: amlodipine + benazepril, felodipine + ramipril, verapamil + trandolapril; CA + ARB: amlodipine + valsartan). They are expected not only to improve BP control, but also to facilitate long-term adherence with antihypertensive therapy, thereby providing maximal protection against the cardiovascular and renal damage caused by high BP.
Resumo:
Thy-1, an abundant mammalian glycoprotein, interacts with αvβ3 integrin and syndecan-4 in astrocytes and thus triggers signaling events that involve RhoA and its effector p160ROCK, thereby increasing astrocyte adhesion to the extracellular matrix. The signaling cascade includes calcium-dependent activation of protein kinase Cα upstream of Rho; however, what causes the intracellular calcium transients required to promote adhesion remains unclear. Purinergic P2X7 receptors are important for astrocyte function and form large non-selective cation pores upon binding to their ligand, ATP. Thus, we evaluated whether the intracellular calcium required for Thy-1-induced cell adhesion stems from influx mediated by ATP-activated P2X7 receptors. Results show that adhesion induced by the fusion protein Thy-1-Fc was preceded by both ATP release and sustained intracellular calcium elevation. Elimination of extracellular ATP with Apyrase, chelation of extracellular calcium with EGTA, or inhibition of P2X7 with oxidized ATP, all individually blocked intracellular calcium increase and Thy-1-stimulated adhesion. Moreover, Thy-1 mutated in the integrin-binding site did not trigger ATP release, and silencing of P2X7 with specific siRNA blocked Thy-1-induced adhesion. This study is the first to demonstrate a functional link between αvβ3 integrin and P2X7 receptors, and to reveal an important, hitherto unanticipated, role for P2X7 in calcium-dependent signaling required for Thy-1-stimulated astrocyte adhesion.
Resumo:
Although the activation of the A(1)-subtype of the adenosine receptors (A(1)AR) is arrhythmogenic in the developing heart, little is known about the underlying downstream mechanisms. The aim of this study was to determine to what extent the transient receptor potential canonical (TRPC) channel 3, functioning as receptor-operated channel (ROC), contributes to the A(1)AR-induced conduction disturbances. Using embryonic atrial and ventricular myocytes obtained from 4-day-old chick embryos, we found that the specific activation of A(1)AR by CCPA induced sarcolemmal Ca(2+) entry. However, A(1)AR stimulation did not induce Ca(2+) release from the sarcoplasmic reticulum. Specific blockade of TRPC3 activity by Pyr3, by a dominant negative of TRPC3 construct, or inhibition of phospholipase Cs and PKCs strongly inhibited the A(1)AR-enhanced Ca(2+) entry. Ca(2+) entry through TRPC3 was activated by the 1,2-diacylglycerol (DAG) analog OAG via PKC-independent and -dependent mechanisms in atrial and ventricular myocytes, respectively. In parallel, inhibition of the atypical PKCζ by myristoylated PKCζ pseudosubstrate inhibitor significantly decreased the A(1)AR-enhanced Ca(2+) entry in both types of myocytes. Additionally, electrocardiography showed that inhibition of TRPC3 channel suppressed transient A(1)AR-induced conduction disturbances in the embryonic heart. Our data showing that A(1)AR activation subtly mediates a proarrhythmic Ca(2+) entry through TRPC3-encoded ROC by stimulating the phospholipase C/DAG/PKC cascade provide evidence for a novel pathway whereby Ca(2+) entry and cardiac function are altered. Thus, the A(1)AR-TRPC3 axis may represent a potential therapeutic target.