50 resultados para energy requirement model

em Université de Lausanne, Switzerland


Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: To assess total free-living energy expenditure (EE) in Gambian farmers with two independent methods, and to determine the most realistic free-living EE and physical activity in order to establish energy requirements for rural populations in developing countries. DESIGN: In this cross-sectional study two methods were applied at the same time. SETTING: Three rural villages and Dunn Nutrition Centre Keneba, MRC, The Gambia. SUBJECTS: Eight healthy, male subjects were recruited from three rural Gambian villages in the sub-Sahelian area (age: 25 +/- 4y; weight: 61.2 +/- 10.1 kg; height: 169.5 +/- 6.5 cm, body mass index: 21.2 +/- 2.5 kg/m2). INTERVENTION: We assessed free-living EE with two inconspicuous and independent methods: the first one used doubly labeled water (DLW) (2H2 18O) over a period of 12 days, whereas the second one was based on continuous heart rate (HR) measurements on two to three days using individual regression lines (HR vs EE) established by indirect calorimetry in a respiration chamber. Isotopic dilution of deuterium (2H2O) was also used to assess total body water and hence fat-free mass (FFM). RESULTS: EE assessed by DLW was found to be 3880 +/- 994 kcal/day (16.2 +/- 4.2 MJ/day). Expressed per unit body weight the EE averaged 64.2 +/- 9.3 kcal/kg/d (269 +/- 38 kJ/kg/d). These results were consistent with the EE results assessed by HR: 3847 +/- 605 kcal/d (16.1 +/- 2.5 MJ/d) or 63.4 +/- 8.2 kcal/kg/d (265 +/- 34kJ/kg/d). Physical activity index, expressed as a multiple of basal metabolic rate (BMR), averaged 2.40 +/- 0.41 (DLW) or 2.40 +/- 0.28 (HR). CONCLUSIONS: These findings suggest an extremely high level of physical activity in Gambian men during intense agricultural work (wet season). This contrasts with the relative food shortage, previously reported during the harvesting period. We conclude that the assessment of EE during the agricultural season in non-industrialized countries needs further investigations in order to obtain information on the energy requirement of these populations. For this purpose the use of the DLW and HR methods have been shown to be useful and complementary.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Current obesity prevention strategies recommend increasing daily physical activity, assuming that increased activity will lead to corresponding increases in total energy expenditure and prevent or reverse energy imbalance and weight gain [1-3]. Such Additive total energy expenditure models are supported by exercise intervention and accelerometry studies reporting positive correlations between physical activity and total energy expenditure [4] but are challenged by ecological studies in humans and other species showing that more active populations do not have higher total energy expenditure [5-8]. Here we tested a Constrained total energy expenditure model, in which total energy expenditure increases with physical activity at low activity levels but plateaus at higher activity levels as the body adapts to maintain total energy expenditure within a narrow range. We compared total energy expenditure, measured using doubly labeled water, against physical activity, measured using accelerometry, for a large (n = 332) sample of adults living in five populations [9]. After adjusting for body size and composition, total energy expenditure was positively correlated with physical activity, but the relationship was markedly stronger over the lower range of physical activity. For subjects in the upper range of physical activity, total energy expenditure plateaued, supporting a Constrained total energy expenditure model. Body fat percentage and activity intensity appear to modulate the metabolic response to physical activity. Models of energy balance employed in public health [1-3] should be revised to better reflect the constrained nature of total energy expenditure and the complex effects of physical activity on metabolic physiology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Nutrition therapy is a cornerstone of burn care from the early resuscitation phase until the end of rehabilitation. While several aspects of nutrition therapy are similar in major burns and other critical care conditions, the patho-physiology of burn injury with its major endocrine, inflammatory, metabolic and immune alterations requires some specific nutritional interventions. The present text developed by the French speaking societies, is updated to provide evidenced-based recommendations for clinical practice. METHODS: A group of burn specialists used the GRADE methodology (Grade of Recommendation, Assessment, Development and Evaluation) to evaluate human burn clinical trials between 1979 and 2011. The resulting recommendations, strong suggestions or suggestions were then rated by the non-burn specialized experts according to their agreement (strong, moderate or weak). RESULTS: Eight major recommendations were made. Strong recommendations were made regarding, 1) early enteral feeding, 2) the elevated protein requirements (1.5-2 g/kg in adults, 3 g/kg in children), 3) the limitation of glucose delivery to a maximum of 55% of energy and 5 mg/kg/h associated with moderate blood glucose (target ≤ 8 mmol/l) control by means of continuous infusion, 4) to associated trace element and vitamin substitution early on, and 5) to use non-nutritional strategies to attenuate hypermetabolism by pharmacological (propranolol, oxandrolone) and physical tools (early surgery and thermo-neutral room) during the first weeks after injury. Suggestion were made in absence of indirect calorimetry, to use of the Toronto equation (Schoffield in children) for energy requirement determination (risk of overfeeding), and to maintain fat administration ≤ 30% of total energy delivery. CONCLUSION: The nutritional therapy in major burns has evidence-based specificities that contribute to improve clinical outcome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Ethanol can account for up to 10 percent of the energy intake of persons who consume moderate amounts of ethanol. Its effect on energy metabolism, however, is not known. METHODS: We studied the effect of ethanol on 24-hour substrate-oxidation rates in eight normal men during two 48-hour sessions in an indirect-calorimetry chamber. In each session, the first 24 hours served as the control period. On the second day of one session, an additional 25 percent of the total energy requirement was added as ethanol (mean [+/- SD], 96 +/- 4 g per day); during the other session, 25 percent of the total energy requirement was replaced by ethanol, which was isocalorically substituted for lipids and carbohydrates. RESULTS: Both the addition of ethanol and the isocaloric substitution of ethanol for other foods reduced 24-hour lipid oxidation. The respective mean (+/- SE) decreases were 49.4 +/- 6.7 and 44.1 +/- 9.3 g per day (i.e., reductions of 36 +/- 3 percent and 31 +/- 7 percent from the oxidation rate during the control day; P less than 0.001 and P less than 0.0025). This effect occurred only during the daytime period (8:30 a.m. to 11:30 p.m.), when ethanol was consumed and metabolized. Neither the addition of ethanol to the diet nor the isocaloric substitution of ethanol for other foods significantly altered the oxidation of carbohydrate or protein. Both regimens including ethanol produced an increase in 24-hour energy expenditure (7 +/- 1 percent with the addition of ethanol, P less than 0.001; 4 +/- 1 percent with the substitution of ethanol for other energy sources, P less than 0.025). CONCLUSIONS: Ethanol, either added to the diet or substituted for other foods, increases 24-hour energy expenditure and decreases lipid oxidation. Habitual consumption of ethanol in excess of energy needs probably favors lipid storage and weight gain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is currently suspected that sugar overconsumption, and more specifically fructose, may promote the development of obesity and of several cardio-metabolic disorders. However, environmental factors, such as fish oil and dietary proteins, may prevent some deleterious effects of fructose. The aim of this thesis was to identify potential environmental factors that may modulate the metabolic effects of fructose. The first study was designed to evaluate the impact of endurance exercise in healthy young men fed a high-fructose, isocaloric diet. Fructose-induced effects on lipid profile were totally prevented by endurance exercise and may be explained by an enhanced clearance of TRL-TG and the inhibition of de novo lipogenesis. As energy intake was adjusted to energy requirement, we can conclude that exercise acts on fructose metabolism independently of energy imbalance. The second study aimed at determining whether coffee and more specifically chlorogenic acid consumption may prevent fructose-induced intrahepatic lipids accumulation, hypertriglyceridemia and hepatic insulin resistance, through a stimulation of lipid oxidation. Coffee did not prevent the fructose-induced increase in IHCL or plasma TG. Interestingly, the three coffees tested prevented the decrease in hepatic insulin sensitivity, independently of their content in caffeine or chlorogenic acid. Finally, in the third study, we evaluated the effect of essential amino acid supplementation on the increase of hepatic lipids induced by a high-fructose diet. This intervention slightly decreased IHCL concentration. The exact mechanisms remain unidentified but may involve an increased secretion of VLDL-TG. In conclusion, the environmental factors evaluated allow to prevent some of the deleterious effects of fructose and suggest that recommendations on fructose consumption should also take into account environmental factors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The major processes discussed below are protein turnover (degradation and synthesis), degradation into urea, or conversion into glucose (gluconeogenesis, Figure 1). Daily protein turnover is a dynamic process characterized by a double flux of amino acids: the amino acids released by endogenous (body) protein breakdown can be reutilized and reconverted to protein synthesis, with very little loss. Daily rates of protein turnover in humans (300 to 400 g per day) are largely in excess of the level of protein intake (50 to 80 g per day). A fast growing rate, as in premature babies or in children recovering from malnutrition, leads to a high protein turnover rate and a high protein and energy requirement. Protein metabolism (synthesis and breakdown) is an energy-requiring process, dependent upon endogenous ATP supply. The contribution made by whole-body protein turnover to the resting metabolic rate is important: it represents about 20 % in adults and more in growing children. Metabolism of proteins cannot be disconnected from that of energy since energy balance influences net protein utilization, and since protein intake has an important effect on postprandial thermogenesis - more important than that of fats or carbohydrates. The metabolic need for amino acids is essentially to maintain stores of endogenous tissue proteins within an appropriate range, allowing protein homeostasis to be maintained. Thanks to a dynamic, free amino acid pool, this demand for amino acids can be continuously supplied. The size of the free amino acid pool remains limited and is regulated within narrow limits. The supply of amino acids to cover physiological needs can be derived from 3 sources: 1. Exogenous proteins that release amino acids after digestion and absorption 2. Tissue protein breakdown during protein turnover 3. De novo synthesis, including amino acids (as well as ammonia) derived from the process of urea salvage, following hydrolysis and microflora metabolism in the hind gut. When protein intake surpasses the physiological needs of amino acids, the excess amino acids are disposed of by three major processes: 1. Increased oxidation, with terminal end products such as CO₂ and ammonia 2. Enhanced ureagenesis i. e. synthesis of urea linked to protein oxidation eliminates the nitrogen radical 3. Gluconeogenesis, i. e. de novo synthesis of glucose. Most of the amino groups of the excess amino acids are converted into urea through the urea cycle, whereas their carbon skeletons are transformed into other intermediates, mostly glucose. This is one of the mechanisms, essential for life, developed by the body to maintain blood glucose within a narrow range, (i. e. glucose homeostasis). It includes the process of gluconeogenesis, i. e. de novo synthesis of glucose from non-glycogenic precursors; in particular certain specific amino acids (for example, alanine), as well as glycerol (derived from fat breakdown) and lactate (derived from muscles). The gluconeogenetic pathway progressively takes over when the supply of glucose from exogenous or endogenous sources (glycogenolysis) becomes insufficient. This process becomes vital during periods of metabolic stress, such as starvation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thermogenic response to a 100 g oral glucose load was studied by indirect calorimetry in 13 older persons (age range, 38-68 years) and compared with that of 16 young matched controls of similar body weight (age range, 19-30 years). The glucose-induced thermogenesis measured over 180 min and expressed as a per cent of the energy content of the glucose load was found to be reduced in the older subjects, i.e., 5.8 +/- 0.3 per cent vs 8.6 +/- 0.7 per cent, P less than 0.002). This was also accompanied by a significant decrease in the glucose oxidation rate when averaged over the same three-hour period following the glucose load, i.e., 153 mg/min vs 213 mg/min in the control subjects (P less than 0.001) despite a similar time course of glycemia. This study suggests that the thermogenic response to an oral glucose load is blunted in older people, and this may represent an additional factor that contributes to the decreased energy requirement with age and therefore to the increased propensity to obesity if energy intake is not adjusted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thermogenic response to a 100-g oral glucose challenge was studied in 12 patients with Graves' disease using continuous indirect calorimetry. Seven hyperthyroid patients were reinvestigated under the same experimental conditions after medical therapy. The mean net increase in energy expenditure (delta EE) following the glucose challenge was the same in hyperthyroid patients as compared to a control group (delta EE = +0.15 +/- 0.02 and 0.15 +/- 0.01 kcal/min, respectively) and the treated patients (delta EE = +0.11 +/- 0.03 kcal/min ns). When expressed as a percentage of the energy content of the glucose challenge, the mean glucose induced thermogenesis was similar in all three groups: 7.0 +/- 1.0%, 7.4 +/- 0.5%, and 5.5 +/- 1.3% in hyperthyroid, control subjects, and treated patients, respectively. It is concluded that the high energy requirement of hyperthyroid patients is due primarily to an elevated resting energy expenditure. The postprandial thermogenesis in itself does not contribute to the elevated fuel utilization in Graves' disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim was to explore whether the origin of carbohydrate oxidation (exogenous compared with endogenous carbohydrate) after consumption of a mixed meal was influenced by obesity in children. Ten obese prepubertal children 8 y of age (44.2 +/- 3.6 kg) were studied over 9.5 h and compared with eight normal-weight, matched control children (28.5 +/- 1.6 kg). They were fed a mixed meal containing naturally enriched [13C]carbohydrate (cane sugar and popcorn) providing 55% of the daily energy requirement as measured by 24-h resting metabolic rate. Total carbohydrate oxidation was calculated by indirect calorimetry (hood system) whereas exogenous carbohydrate oxidation was estimated from carbon dioxide production (VCO2), the isotopic enrichment of breath 13CO2, and the abundance of [13C]carbohydrate in the meal ingested. The time course of 13CO2 in breath-measured over 570 min-followed a similar pattern in both groups. Although total carbohydrate oxidation was not significantly different among the two groups, exogenous carbohydrate utilization was significantly greater (P < 0.03) and endogenous carbohydrate oxidation was significantly lower (P < 0.05) in obese compared with control children. In addition, the rate of exogenous carbohydrate oxidation expressed as a proportion of total carbohydrate oxidation was positively related to the body fat of the children (r = 0.68, P < 0.01). The study suggests that in the postprandial phase, a smaller proportion of carbohydrate oxidation is accounted for by glycogen breakdown in obese children. The sparing of endogenous glycogen may result from decreased glycogen turnover already present at an early age.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

RÉSUMÉ : Le traitement répété à la phencyclidine (PCP), un bloqueur du récepteur NMDA (NMDAR), reproduit chez les rongeurs une partie de la symptomatologie typique de la schizophrénie. Le blocage prolongé du NMDAR par la PCP mime une hypofunction du NMDAR, une des principales altérations supposées exister dans les cerveaux des patients schizophréniques. Le but de notre étude était d'examiner les conséquences neurochimiques, métaboliques et fonctionnelles du traitement répété à la phencyclidine in vivo, au niveau du cortex préfrontal (cpf), une région cérébrale qui joue un rôle dans les déficits cognitifs observés chez les patients schizophréniques. Pour répondre à cette question, les rats ou les souris ont reçu chaque jour une injection soit de PCP (5 mg/kg), soit de solution saline, pendant 7 ou 14 jours. Les animaux ont ensuite été sacrifiés au moins 24 heures après le dernier traitement. Des tranches aiguës du cpf ont été préparées rapidement, puis stimulées avec une concentration élevée de KCI, de manière à induire une libération de glutamate à partir des terminaisons synaptiques excitatrices. Les résultats montrent que les tranches du cpf des animaux traités à la PCP ont libéré une quantité de glutamate significativement inférieure par rapport à celles des animaux contrôle. Ce déficit de libération a persisté 72 heures après la fin du traitement, tandis qu'il n'était pas observé dans le cortex visuel primaire, une autre région corticale. En outre, le traitement avec des antipsychotiques, l'halopéridol ou l'olanzapine, a supprimé le déficit induit par la PCP. Le même déficit de libération a été remarqué sur des synaptosomes obtenus à partir du cpf des animaux traités à la phenryclidine. Cette observation indique que la PCP induit une modification plastique adaptative du mécanisme qui contrôle la libération du glutamate dans les terminaisons synaptiques. Nous avons découvert que cette modification implique la sous-régulation d'un NMDAR présynaptique, qui serait doué d'un rôle d'autorécepteur stimulateur de la libération du glutamate. Grâce à des tests comportementaux conduits en parallèle et réalisés pour évaluer la fonctionnalité du cpf, nous avons observé chez les souris traitées à la PCP une flexibilité comportementale réduite lors d'un test de discrimination de stimuli visuels/tactiles. Le déficit cognitif était encore présent 4 jours après la dernière administration de PCP. La technique de l'autoradiographie quantitative du [14C]2-deoxyglucose a permis d'associer ce déficit à une réduction de l'activité métabolique cérébrale pendant le déroulement du test, particulièrement au niveau du cpf. Dans l'ensemble, nos résultats suggèrent que le blocage prolongé du NMDAR lors de l'administration répétée de PCP produit un déficit de libération du glutamate au niveau des terminaisons synaptiques excitatrices du cpf. Un tel déficit pourrait être provoqué par la sousrégulation d'un NMDAR présynaptique, qui aurait une fonction de stimulateur de libération; la transmission excitatrice du cpf s'en trouverait dans ce cas réduite. Ce résultat est en ligne avec l'activité métabolique et fonctionnelle réduite du cpf et l'observation de déficits cognitifs induits lors de l'administration de la PCP. ABSTRACT : Sub-chronic treatment with phencyclidine (PCP), an NMDA receptor (NMDAR) channel blocker, reproduces in rodents part of the symptomatology associated to schizophrenia in humans. Prolonged pharmacological blockade of NMDAR with PCP mimics NMDAR hypofunction, one of the main alterations thought to take place in the brains of schizophrenics. Our study was aimed at investigating the neurochemical, metabolic and behavioral consequences of repeated PCP administration in vivo, focusing on the functioning of the prefrontal cortex (pfc), a brain region highly relevant for the cognitive deficits observed in schizophrenic patients. Rats or mice received a daily administration of either PCP (5 mg/kg) or saline for 7 or 14 days. At least 24 hours after the last treatment the animals were sacrificed. Acute slices of the pfc were quickly prepared and challenged with high KCl to induce synaptic glutamate release. Pfc slices from PCP-treated animals released significantly less glutamate than slices from salinetreated animals. The deficit persisted 72 hours after the end of the treatment, while it was not observed in another cortical region: the primary visual cortex. Interestingly, treatment with antipsychotic drugs, either haloperidol or olanzapine, reverted the glutamate release defect induced by PCP treatment. The same release defect was observed in synaptosomes prepared from the pfc of PCP-treated animals, indicating that PCP induces a plastic adaptive change in the mechanism controlling glutamate release in the glutamatergic terminals. We discovered that such change most likely involves the down-regulation of a newly identified, pre-synaptic NMDAR with stimulatory auto-receptor function on glutamate release. In parallel sets of behavioral experiments challenging pfc function, mice sub-chronically treated with PCP displayed reduced behavioral flexibility (reversal learning) in a visual/tactile-cued discrimination task. The cognitive deficit was still evident 4 days after the last PCP administration and was associated to reduced brain metabolic activity during the performance of the behavioral task, notably in the pfc, as determined by [14C]2-deoxyglucose quantitative autoradiography. Clverall, our findings suggest that prolonged NMDAR blockade by repeated PCP administration results in a defect of glutamate release from excitatory afferents in the pfc, possibly ascribed to down-regulation of apre-synaptic stimulatory NMDAR. Deficient excitatory neurotransmission in the pfc is consistent with the reduced metabolic and functional activation of this area and the observed PCP-induced cognitive deficits.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

RésuméL'origine de l'obésité, qui atteint des proportions épidémiques, est complexe. Elle est liée au mode de vie et au comportement des individus par rapport à l'activité physique, expression des choix individuels et de l'interaction avec l'environnement. Les mesures du comportement au niveau de l'activité physique des individus face à leur environnement, la répartition des types d'activité physique, la durée, la fréquence, l'intensité, et la dépense énergétique sont d'une grande importance. Aujourd'hui, il y a un manque de méthodes permettant une évaluation précise et objective de l'activité physique et du comportement des individus. Afin de compléter les recherches relatives à l'activité physique, à l'obésité et à certaines maladies, le premier objectif du travail de thèse était de développer un modèle pour l'identification objective des types d'activité physique dans des conditions de vie réelles et l'estimation de la dépense énergétique basée sur une combinaison de 2 accéléromètres et 1 GPS. Le modèle prend en compte qu'une activité donnée peut être accomplie de différentes façons dans la vie réelle. Les activités quotidiennes ont pu être classées en 8 catégories, de sédentaires à actives, avec une précision de 1 min. La dépense énergétique a pu peut être prédite avec précision par le modèle. Après validation du modèle, le comportement des individus de l'activité physique a été évalué dans une seconde étude. Nous avons émis l'hypothèse que, dans un environnement caractérisé par les pentes, les personnes obèses sont tentées d'éviter les pentes raides et de diminuer la vitesse de marche au cours d'une activité physique spontanée, ainsi que pendant les exercices prescrits et structurés. Nous avons donc caractérisé, par moyen du modèle développé, le comportement des individus obèses dans un environnement vallonné urbain. La façon dont on aborde un environnement valloné dans les déplacements quotidiens devrait également être considérée lors de la prescription de marche supplémentaire afin d'augmenter l'activité physique.SummaryOrigin of obesity, that reached epidemic proportion, is complex and may be linked to different lifestyle and physical activity behaviour. Measurement of physical activity behaviour of individuals towards their environment, the distribution of physical activity in terms of physical activity type, volume, duration, frequency, intensity, and energy expenditure is of great importance. Nowadays, there is a lack of methods for accurate and objective assessment of physical activity and of individuals' physical activity behaviour. In order to complement the research relating physical activity to obesity and related diseases, the first aim of the thesis work was to develop a model for objective identification of physical activity types in real-life condition and energy expenditure based on a combination of 2 accelerometers and 1 GPS device. The model takes into account that a given activity can be achieved in many different ways in real life condition. Daily activities could be classified in 8 categories, as sedentary to active physical activity, within 1 min accuracy, and physical activity patterns determined. The energy expenditure could be predicted accurately with an accuracy below 10%. Furthermore, individuals' physical activity behaviour is expression of individual choices and their interaction with the neighbourhood environment. In a second study, we hypothesized that, in an environment characterized by inclines, obese individuals are tempted to avoid steep positive slopes and to decrease walking speed during spontaneous outdoor physical activity, as well as during prescribed structured bouts of exercise. Finally, we characterized, by mean of the developed model, the physical activity behaviour of obese individuals in a hilly urban environment. Quantifying how one tackles hilly environment or avoids slope in their everyday displacements should be also considered while prescribing extra walking in free-living conditions in order to increase physical activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Functional neuroimaging has undergone spectacular developments in recent years. Paradoxically, its neurobiological bases have remained elusive, resulting in an intense debate around the cellular mechanisms taking place upon activation that could contribute to the signals measured. Taking advantage of a modeling approach, we propose here a coherent neurobiological framework that not only explains several in vitro and in vivo observations but also provides a physiological basis to interpret imaging signals. First, based on a model of compartmentalized energy metabolism, we show that complex kinetics of NADH changes observed in vitro can be accounted for by distinct metabolic responses in two cell populations reminiscent of neurons and astrocytes. Second, extended application of the model to an in vivo situation allowed us to reproduce the evolution of intraparenchymal oxygen levels upon activation as measured experimentally without substantially altering the initial parameter values. Finally, applying the same model to functional neuroimaging in humans, we were able to determine that the early negative component of the blood oxygenation level-dependent response recorded with functional MRI, known as the initial dip, critically depends on the oxidative response of neurons, whereas the late aspects of the signal correspond to a combination of responses from cell types with two distinct metabolic profiles that could be neurons and astrocytes. In summary, our results, obtained with such a modeling approach, support the concept that both neuronal and glial metabolic responses form essential components of neuroimaging signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4(fky), the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4(fky/fky) mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4(fky/fky) mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the "N assembly module", which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD(+) ratio that inhibits mitochondrial fatty acid β-oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Hip fractures are responsible for excessive mortality, decreasing the 5-year survival rate by about 20%. From an economic perspective, they represent a major source of expense, with direct costs in hospitalization, rehabilitation, and institutionalization. The incidence rate sharply increases after the age of 70, but it can be reduced in women aged 70-80 years by therapeutic interventions. Recent analyses suggest that the most efficient strategy is to implement such interventions in women at the age of 70 years. As several guidelines recommend bone mineral density (BMD) screening of postmenopausal women with clinical risk factors, our objective was to assess the cost-effectiveness of two screening strategies applied to elderly women aged 70 years and older. METHODS: A cost-effectiveness analysis was performed using decision-tree analysis and a Markov model. Two alternative strategies, one measuring BMD of all women, and one measuring BMD only of those having at least one risk factor, were compared with the reference strategy "no screening". Cost-effectiveness ratios were measured as cost per year gained without hip fracture. Most probabilities were based on data observed in EPIDOS, SEMOF and OFELY cohorts. RESULTS: In this model, which is mostly based on observed data, the strategy "screen all" was more cost effective than "screen women at risk." For one woman screened at the age of 70 and followed for 10 years, the incremental (additional) cost-effectiveness ratio of these two strategies compared with the reference was 4,235 euros and 8,290 euros, respectively. CONCLUSION: The results of this model, under the assumptions described in the paper, suggest that in women aged 70-80 years, screening all women with dual-energy X-ray absorptiometry (DXA) would be more effective than no screening or screening only women with at least one risk factor. Cost-effectiveness studies based on decision-analysis trees maybe useful tools for helping decision makers, and further models based on different assumptions should be performed to improve the level of evidence on cost-effectiveness ratios of the usual screening strategies for osteoporosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The determination of characteristic cardiac parameters, such as displacement, stress and strain distribution are essential for an understanding of the mechanics of the heart. The calculation of these parameters has been limited until recently by the use of idealised mathematical representations of biventricular geometries and by applying simple material laws. On the basis of 20 short axis heart slices and in consideration of linear and nonlinear material behaviour we have developed a FE model with about 100,000 degrees of freedom. Marching Cubes and Phong's incremental shading technique were used to visualise the three dimensional geometry. In a quasistatic FE analysis continuous distribution of regional stress and strain corresponding to the endsystolic state were calculated. Substantial regional variation of the Von Mises stress and the total strain energy were observed at all levels of the heart model. The results of both the linear elastic model and the model with a nonlinear material description (Mooney-Rivlin) were compared. While the stress distribution and peak stress values were found to be comparable, the displacement vectors obtained with the nonlinear model were generally higher in comparison with the linear elastic case indicating the need to include nonlinear effects.