37 resultados para encapsulated lubricating oil
em Université de Lausanne, Switzerland
Resumo:
Clinically and experimentally, a case for omega-3 polyunsaturated fatty acid (PUFA) cardioprotection in females has not been clearly established. The goal of this study was to investigate whether dietary omega-3 PUFA supplementation could provide ischemic protection in female mice with an underlying genetic predisposition to cardiac hypertrophy. Mature female transgenic mice (TG) with cardiac-specific overexpression of angiotensinogen that develop normotensive cardiac hypertrophy and littermate wild-type (WT) mice were fed a fish oil-derived diet (FO) or PUFA-matched control diet (CTR) for 4 wk. Myocardial membrane lipids, ex vivo cardiac performance (intraventricular balloon) after global no-flow ischemia and reperfusion (15/30 min), and reperfusion arrhythmia incidence were assessed. FO diet suppressed cardiac growth by 5% and 10% in WT and TG, respectively (P < 0.001). The extent of mechanical recovery [rate-pressure product (RPP) = beats/min x mmHg] of FO-fed WT and TG hearts was similar (50 +/- 7% vs. 45 +/- 12%, 30 min reperfusion), and this was not significantly different from CTR-fed WT or TG. To evaluate whether systemic estrogen was masking a protective effect of the FO diet, the responses of ovariectomized (OVX) WT and TG mice to FO dietary intervention were assessed. The extent of mechanical recovery of FO-fed OVX WT and TG (RPP, 50 +/- 4% vs. 64 +/- 8%) was not enhanced compared with CTR-fed mice (RPP, 60 +/- 11% vs. 80 +/- 8%, P = 0.335). Dietary FO did not suppress the incidence of reperfusion arrhythmias in WT or TG hearts (ovary-intact mice or OVX). Our findings indicate a lack of cardioprotective effect of dietary FO in females, determined by assessment of mechanical and arrhythmic activity postischemia in a murine ex vivo heart model.
Resumo:
To test the dose response effect of infused fish oil (FO) rich in n-3 PUFAs on the inflammatory response to endotoxin (LPS) and on membrane incorporation of fatty acids in healthy subjects. Prospective, sequential investigation comparing three different FO doses. Three groups of male subjects aged 26.8 +/- 3.2 years (BMI 22.5 +/- 2.1). One of three FO doses (Omegaven10%) as a slow infusion before LPS: 0.5 g/kg 1 day before LPS, 0.2 g/kg 1 day before, or 0.2 g/kg 2 h before. Temperature, hemodynamic variables, indirect calorimetry and blood samples (TNF-alpha, stress hormones) were collected. After LPS temperature, ACTH and TNF-alpha concentrations increased in the three groups: the responses were significantly blunted (p < 0.0001) compared with the control group of the Pluess et al. trial. Cortisol was unchanged. Lowest plasma ACTH, TNF-alpha and temperature AUC values were observed after a single 0.2 g/kg dose of FO. EPA incorporation into platelet membranes was dose-dependent. Having previously shown that the response to LPS was reproducible, this study shows that three FO doses blunted it to various degrees. The 0.2 g/kg perfusion immediately before LPS was the most efficient in blunting the responses, suggesting LPS capture in addition to the systemic and membrane effects.
Resumo:
In the whole animal, metabolic regulations are set by reciprocal interactions between various organs, via the blood circulation. At present, analyses of such interactions require numerous and uneasily controlled in vivo experiments. In a search for an alternative to in vivo experiments, our work aims at developing a coculture system in which different cell types are isolated in polymer capsules and grown in a common environment. The signals exchanged between cells from various origins are, thus, reproducing the in vivo intertissular communications. With this perspective, we evaluated a new encapsulation system as an artificial housing for liver cells on the one hand and adipocytes on the other hand. Murine hepatocytes were encapsulated with specially designed multicomponent capsules formed by polyelectrolyte complexation between sodium alginate, cellulose sulphate and poly(methylene-coguanidine) hydrochloride, of which the permeability has been characterized. We demonstrated the absence of cytotoxicity and the excellent biocompatibility of these capsules towards primary culture of murine hepatocytes. Encapsulated hepatocytes retain their specific functions--transaminase activity, urea synthesis, and protein secretion--during the first four days of culture in minimum medium. Mature adipocytes, isolated from mouse epidydimal fat, were embedded in alginate beads. Measurement of protein secretion shows an identical profile between free and embedded adipocytes. We finally assessed the properties of encapsulated hepatocytes, cryopreserved over a periods of up to four months. The perspective of using encapsulated cells in coculture are discussed, since this system may represent a promising tool for fundamental research, such as analyses of drug metabolism, intercellular regulations, and metabolic pathways, as well as for the establishment of a tissue bank for storage and supply of murine hepatocytes.
Resumo:
AimWe take a comparative phylogeographical approach to assess whether three species involved in a specialized oil-rewarding pollination system (i.e. Lysimachia vulgaris and two oil-collecting bees within the genus Macropis) show congruent phylogeographical trajectories during post-glacial colonization processes. Our working hypothesis is that within specialized mutualistic interactions, where each species relies on the co-occurrence of the other for survival and/or reproduction, partners are expected to show congruent evolutionary trajectories, because they are likely to have followed parallel migration routes and to have shared glacial refugia. LocationWestern Palaearctic. MethodsOur analysis relies on the extensive sampling of 104 Western Palaearctic populations (totalling 434, 159 and 74 specimens of Lysimachiavulgaris, Macropiseuropaea and Macropisfulvipes, respectively), genotyped with amplified fragment length polymorphism. Based on this, we evaluated the regional genetic diversity (Shannon diversity and allele rarity index) and genetic structure (assessed using structure, population networks, isolation-by-distance and spatial autocorrelation metrics) of each species. Finally, we compared the general phylogeographical patterns obtained. ResultsContrary to our expectations, the analyses revealed phylogeographical signals suggesting that the investigated organisms demonstrate independent post-glacial trajectories as well as distinct contemporaneous demographic parameters, despite their mutualistic interaction. Main conclusionsThe mutualistic partners investigated here are likely to be experiencing distinct and independent evolutionary dynamics because of their contrasting life-history traits (e.g. dispersal abilities), as well as distinct hubs and migration routes. Such conditions would prevent and/or erase any signature of co-structuring of lineages in space and time. As a result, the lack of phylogeographical congruence driven by differences in life-history traits might have arisen irrespective of the three species having shared similar Pleistocene glacial refugia.
Resumo:
OBJECTIVE: Fish oil (FO) may attenuate the inflammatory response after major surgery such as abdominal aortic aneurysm (AAA) surgery. We aimed at evaluating the clinical impact and safety aspects of a FO containing parenteral nutrition (PN) after AAA surgery. METHODS: Intervention consisted in 4 days of either standard (STD: Lipofundin medium-chain triglyceride (MCT): long-chain triglyceride (LCT)50%-MCT50%) or FO containing PN (FO: Lipoplus: LCT40%-MCT50%-FO10%). Energy target were set at 1.3 times the preoperative resting energy expenditure by indirect calorimetry. Blood sampling on days 0, 2, 3 and 4. Glucose turnover by the (2)H(2)-glucose method. Muscle microdialysis. Clinical data: maximal daily T degrees, intensive care unit (ICU) and hospital stay. RESULTS: Both solutions were clinically well tolerated, without any differences in laboratory safety parameters, inflammatory, metabolic data, or in organ failures. Plasma tocopherol increased similarly; with FO, docosahexaenoic and eicosapentaenoic acid increased significantly by day 4 versus baseline or STD. To increased postoperatively, with a trend to lower values in FO group (P=0.09). After FO, a trend toward shorter ICU stay (1.6+/-0.4 versus 2.3+/-0.4), and hospital stay (9.9+/-2.4 versus 11.3+/-2.7 days: P=0.19) was observed. CONCLUSIONS: Both lipid emulsions were well tolerated. FO-PN enhanced the plasma n-3 polyunsaturated fatty acid content, and was associated with trends to lower body temperature and shorter length of stay.
Resumo:
With the current enzootic circulation of highly pathogenic avian influenza viruses, the ability to increase global pandemic influenza vaccine production capacity is of paramount importance. This has been highlighted by, and is one of the main pillars of, the WHO Global Action Plan for Influenza Vaccines (GAP). Such capacity expansion is especially relevant in developing countries. The Vaccine Formulation Laboratory at University of Lausanne is engaged in the technology transfer of an antigen-sparing oil-in-water adjuvant in order to empower developing countries vaccine manufacturers to increase pandemic influenza vaccine capacity. In a one-year project funded by United States Department of Health and Human Services, the Vaccine Formulation Laboratory transferred the process know-how and associated equipment for the pilot-scale manufacturing of an oil-in-water adjuvant to Bio Farma, Indonesia's state-owned vaccine manufacturer, for subsequent formulation with H5N1 pandemic influenza vaccines. This paper describes the experience acquired and lessons learnt from this technology transfer project.
Resumo:
Huntington's disease (HD) is a monogenic neurodegenerative disease that affects the efferent neurons of the striatum. The protracted evolution of the pathology over 15 to 20 years, after clinical onset in adulthood, underscores the potential of therapeutic tools that would aim at protecting striatal neurons. Proteins with neuroprotective effects in the adult brain have been identified, among them ciliary neurotrophic factor (CNTF), which protected striatal neurons in animal models of HD. Accordingly, we have carried out a phase I study evaluating the safety of intracerebral administration of this protein in subjects with HD, using a device formed by a semipermeable membrane encapsulating a BHK cell line engineered to synthesize CNTF. Six subjects with stage 1 or 2 HD had one capsule implanted into the right lateral ventricle; the capsule was retrieved and exchanged for a new one every 6 months, over a total period of 2 years. No sign of CNTF-induced toxicity was observed; however, depression occurred in three subjects after removal of the last capsule, which may have correlated with the lack of any future therapeutic option. All retrieved capsules were intact but contained variable numbers of surviving cells, and CNTF release was low in 13 of 24 cases. Improvements in electrophysiological results were observed, and were correlated with capsules releasing the largest amount of CNTF. This phase I study shows the safety, feasibility, and tolerability of this gene therapy procedure. Heterogeneous cell survival, however, stresses the need for improving the technique.
Resumo:
The fatty acids of olive oils of distinct quality grade from the most important European Union (EU) producer countries were chemically and isotopically characterized. The analytical approach utilized combined capillary column gas chromatography-mass spectrometry (GC/MS) and the novel technique of compound-specific isotope analysis (CSIA) through gas chromatography coupled to a stable isotope ratio mass spectrometer (IRMS) via a combustion (C) interface (GC/C/IRMS). This approach provides further insights into the control of the purity and geographical origin of oils sold as cold-pressed extra virgin olive oil with certified origin appellation. The results indicate that substantial enrichment in heavy carbon isotope (C-13) of the bulk oil and of individual fatty acids are related to (1) a thermally induced degradation due to deodorization or steam washing of the olive oils and (2) the potential blend with refined olive oil or other vegetable oils. The interpretation of the data is based on principal component analysis of the fatty acids concentrations and isotopic data (delta(13)C(oil), delta(13)C(16:0), delta(13)C(18:1)) and on the delta(13)C(16:0) vs delta(13)C(18:1) covariations. The differences in the delta(13)C values of palmitic and oleic acids are discussed in terms of biosynthesis of these acids in the plant tissue and admixture of distinct oils.
Resumo:
Oil palm is a significant and developing crop in many developing countries. The introduction of oil palm puts pressure on natural resources because it is often planted in cleared-cut land that previously supported other crops or was forested. This has led to environmental concerns which require attention. Hence it is important that new plantations are managed in a sustainable way to reduce the impact of oil palm cultivation on ecosystems whilst maximising yield and productivity to farmers. The application of arbuscular mycorrhizal fungi (AMF) technology is one option that can benefit both agronomic plant health and ecosystems. AMF have the potential to increase conventional agricultural productivity and are crucial for the sustainable functioning of agricultural ecosystems. This paper provides an insight into how AMF application might benefit oil palm cultivation through more sustainable management and the practical use of AMF for oil palm plantations.
Resumo:
This review covers two important techniques, high resolution nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), used to characterize food products and detect possible adulteration of wine, fruit juices, and olive oil, all important products of the Mediterranean Basin. Emphasis is placed on the complementary use of SNIF-NMR (site-specific natural isotopic fractionation nuclear magnetic resonance) and IRMS (isotope-ratio mass spectrometry) in association with chemometric methods for detecting the adulteration.
Resumo:
Friedman et al. report that hemodialysis patients with the highest levels of n-3 fatty acids had impressively low odds of sudden cardiac death. The study is limited by a small sample size, and the analysis relies on only a single baseline measurement of blood levels. Recent randomized evidence indeed fails to support that n-3 fatty acids may prevent sudden death in nonrenal patients. More evidence is needed to advocate fish oil in this setting.
Resumo:
High-fructose diet stimulates hepatic de novo lipogenesis (DNL) and causes hypertriglyceridemia and insulin resistance in rodents. Fructose-induced insulin resistance may be secondary to alterations of lipid metabolism. In contrast, fish oil supplementation decreases triglycerides and may improve insulin resistance. Therefore, we studied the effect of high-fructose diet and fish oil on DNL and VLDL triglycerides and their impact on insulin resistance. Seven normal men were studied on four occasions: after fish oil (7.2 g/day) for 28 days; a 6-day high-fructose diet (corresponding to an extra 25% of total calories); fish oil plus high-fructose diet; and control conditions. Following each condition, fasting fractional DNL and endogenous glucose production (EGP) were evaluated using [1-13C]sodium acetate and 6,6-2H2 glucose and a two-step hyperinsulinemic-euglycemic clamp was performed to assess insulin sensitivity. High-fructose diet significantly increased fasting glycemia (7 +/- 2%), triglycerides (79 +/- 22%), fractional DNL (sixfold), and EGP (14 +/- 3%, all P < 0.05). It also impaired insulin-induced suppression of adipose tissue lipolysis and EGP (P < 0.05) but had no effect on whole- body insulin-mediated glucose disposal. Fish oil significantly decreased triglycerides (37%, P < 0.05) after high-fructose diet compared with high-fructose diet without fish oil and tended to reduce DNL but had no other significant effect. In conclusion, high-fructose diet induced dyslipidemia and hepatic and adipose tissue insulin resistance. Fish oil reversed dyslipidemia but not insulin resistance.
Resumo:
We have modeled numerically the seismic response of a poroelastic inclusion with properties applicable to an oil reservoir that interacts with an ambient wavefield. The model includes wave-induced fluid flow caused by pressure differences between mesoscopic-scale (i.e., in the order of centimeters to meters) heterogeneities. We used a viscoelastic approximation on the macroscopic scale to implement the attenuation and dispersion resulting from this mesoscopic-scale theory in numerical simulations of wave propagation on the kilometer scale. This upscaling method includes finite-element modeling of wave-induced fluid flow to determine effective seismic properties of the poroelastic media, such as attenuation of P- and S-waves. The fitted, equivalent, viscoelastic behavior is implemented in finite-difference wave propagation simulations. With this two-stage process, we model numerically the quasi-poroelastic wave-propagation on the kilometer scale and study the impact of fluid properties and fluid saturation on the modeled seismic amplitudes. In particular, we addressed the question of whether poroelastic effects within an oil reservoir may be a plausible explanation for low-frequency ambient wavefield modifications observed at oil fields in recent years. Our results indicate that ambient wavefield modification is expected to occur for oil reservoirs exhibiting high attenuation. Whether or not such modifications can be detected in surface recordings, however, will depend on acquisition design and noise mitigation processing as well as site-specific conditions, such as the geologic complexity of the subsurface, the nature of the ambient wavefield, and the amount of surface noise.
Resumo:
Summary Cell therapy has emerged as a strategy for the treatment of various human diseases. Cells can be transplanted considering their morphological and functional properties to restore a tissue damage, as represented by blood transfusion, bone marrow or pancreatic islet cells transplantation. With the advent of the gene therapy, cells also were used as biological supports for the production of therapeutic molecules that can act either locally or at distance. This strategy represents the basis of ex vivo gene therapy characterized by the removal of cells from an organism, their genetic modification and their implantation into the same or another individual in a physiologically suitable location. The tissue or biological function damage dictates the type of cells chosen for implantation and the required function of the implanted cells. The general aim of this work was to develop an ex vivo gene therapy approach for the secretion of erythropoietin (Epo) in patients suffering from Epo-responsive anemia, thus extending to humans, studies previously performed with mouse cells transplanted in mice and rats. Considering the potential clinical application, allogeneic primary human cells were chosen for practical and safety reasons. In contrast to autologous cells, the use of allogeneic cells allows to characterize a cell lineage that can be further transplanted in many individuals. Furthermore allogeneic cells avoid the potential risk of zoonosis encountered with xenogeneic cells. Accordingly, the immune reaction against this allogeneic source was prevented by cell macro- encapsulation that prevents cell-to-cell contact with the host immune system and allows to easy retrieve the implanted device. The first step consisted in testing the survival of various human primary cells that were encapsulated and implanted for one month in the subcutaneous tissue of immunocompetent and naturally or therapeutically immunodepressed mice, assuming that xenogeneic applications constitute a stringent and representative screening before human transplantation. A fibroblast lineage from the foreskin of a young donor, DARC 3.1 cells, showed the highest mean survival score. We have then performed studies to optimize the manufacturing procedures of the encapsulation device for successful engraftment. The development of calcifications on the polyvinyl alcohol (PVA) matrix serving as a scaffold for enclosed cells into the hollow fiber devices was reported after one month in vivo. Various parameters, including matrix rinsing solutions, batches of PVA and cell lineages were assessed for their respective role in the development of the phenomenon. We observed that the calcifications could be totally prevented by using ultra-pure sterile water instead of phosphate buffer saline solution in the rinsing procedure of the PVA matrix. Moreover, a higher lactate dehydrogenase activity of the cells was found to decrease calcium depositions due to more acidic microenvironment, inhibiting the calcium precipitation. After the selection of the appropriate cell lineage and the optimization of encapsulation conditions, a retroviral-based approach was applied to DARC 3.1 fibroblasts for the transduction of the human Epo cDNA. Various modifications of the retroviral vector and the infection conditions were performed to obtain clinically relevant levels of human Epo. The insertion of a post-transcriptional regulatory element from the woodchuck hepatitis virus as well as of a Kozak consensus sequence led to a 7.5-fold increase in transgene expression. Human Epo production was further optimized by increasing the multiplicity of infection and by selecting high producer cells allowing to reach 200 IU hEpo/10E6 cells /day. These modified cells were encapsulated and implanted in vivo in the same conditions as previously described. All the mouse strains showed a sustained increase in their hematocrit and a high proportion of viable cells were observed after retrieval of the capsules. Finally, in the perspective of human application, a syngeneic model using encapsulated murine myoblasts transplanted in mice was realized to investigate the roles of both the host immune response and the cells metabolic requirements. Various loading densities and anti-inflammatory as well as immunosuppressive drugs were studied. The results showed that an immune process is responsible of cell death in capsules loaded at high cell density. A supporting matrix of PVA was shown to limit the cell density and to avoid early metabolic cell death, preventing therefore the immune reaction. This study has led to the development of encapsulated cells of human origin producing clinically relevant amounts of human EPO. This work resulted also to the optimization of cell encapsulation technical parameters allowing to begin a clinical application in end-stage renal failure patients. Résumé La thérapie cellulaire s'est imposée comme une stratégie de traitement potentiel pour diverses maladies. Si l'on considère leur morphologie et leur fonction, les cellules peuvent être transplantées dans le but de remplacer une perte tissulaire comme c'est le cas pour les transfusions sanguines ou les greffes de moelle osseuse ou de cellules pancréatiques. Avec le développement de la thérapie génique, les cellules sont également devenues des supports biologiques pour la production de molécules thérapeutiques. Cette stratégie représente le fondement de la thérapie génique ex vivo, caractérisée par le prélèvement de cellules d'un organisme, leur modification génétique et leur implantation dans le même individu ou dans un autre organisme. Le choix du type de cellule et la fonction qu'elle doit remplir pour un traitement spécifique dépend du tissu ou de la fonction biologique atteintes. Le but général de ce travail est de développer .une approche par thérapie génique ex vivo de sécrétion d'érythropoïétine (Epo) chez des patients souffrant d'anémie, prolongeant ainsi des travaux réalisés avec des cellules murines implantées chez des souris et des rats. Dans cette perpective, notre choix s'est porté sur des cellules humaines primaires allogéniques. En effet, contrairement aux cellules autologues, une caractérisation unique de cellules allogéniques peut déboucher sur de nombreuses applications. Par ailleurs, l'emploi de cellules allogéniques permet d'éviter les riques de zoonose que l'on peut rencontrer avec des cellules xénogéniques. Afin de protéger les cellules allogéniques soumises à une réaction immunitaire, leur confinement dans des macro-capsules cylindriques avant leur implantation permet d'éviter leur contact avec les cellules immunitaires de l'hôte, et de les retrouver sans difficulté en cas d'intolérance ou d'effet secondaire. Dans un premier temps, nous avons évalué la survie de différentes lignées cellulaires humaines primaires, une fois encapsulées et implantées dans le tissu sous-cutané de souris, soit immunocompétentes, soit immunodéprimées naturellement ou par l'intermédiaire d'un immunosuppresseur. Ce modèle in vivo correspond à des conditions xénogéniques et représente par conséquent un environnement de loin plus hostile pour les cellules qu'une transplantation allogénique. Une lignée fibroblastique issue du prépuce d'un jeune enfant, nommée DARC 3 .1, a montré une remarquable résistance avec un score de survie moyen le plus élevé parmi les lignées testées. Par la suite, nous nous sommes intéressés aux paramètres intervenant dans la réalisation du système d'implantation afin d'optimaliser les conditions pour une meilleure adaptation des cellules à ce nouvel environnement. En effet, en raison de l'apparition, après un mois in vivo, de calcifications au niveau de la matrice de polyvinyl alcohol (PVA) servant de support aux cellules encapsulées, différents paramètres ont été étudiés, tels que les procédures de fabrication, les lots de PVA ou encore les lignées cellulaires encapsulées, afin de mettre en évidence leur rôle respectif dans la survenue de ce processus. Nous avons montré que l'apparition des calcifications peut être totalement prévenue par l'utilisation d'eau pure au lieu de tampon phosphaté lors du rinçage des matrices de PVA. De plus, nous avons observe qu'un taux de lactate déshydrogénase cellulaire élevé était corrélé avec une diminution des dépôts de calcium au sein de la matrice en raison d'un micro-environnement plus acide inhibant la précipitation du calcium. Après sélection de la lignée cellulaire appropriée et de l'optimisation des conditions d'encapsulation, une modification génétique des fibroblastes DARC 3.1 a été réalisée par une approche rétrovirale, permettant l'insertion de l'ADN du gène de l'Epo dans le génome cellulaire. Diverses modifications, tant au niveau génétique qu'au niveau des conditions d'infection, ont été entreprises afin d'obtenir des taux de sécrétion d'Epo cliniquement appropriés. L'insertion dans la séquence d'ADN d'un élément de régulation post¬transcriptionnelle dérivé du virus de l'hépatite du rongeur (« woodchuck ») ainsi que d'une séquence consensus appelée « Kozak » ont abouti à une augmentation de sécrétion d'Epo 7.5 fois plus importante. De même, l'optimisation de la multiplicité d'infection et la sélection plus drastique des cellules hautement productrices ont permis finalement d'obtenir une sécrétion correspondant à 200 IU d'Epo/10E6 cells/jour. Ces cellules génétiquement modifiées ont été encapsulées et implantées in vivo dans les mêmes conditions que celles décrites plus haut. Toutes les souris transplantées ont montré une augmentation significative de leur hématocrite et une proportion importante de cellules présentait une survie conservée au moment de l'explantation des capsules. Finalement, dans la perspective d'une application humaine, un modèle syngénique a été proposé, basé sur l'implantation de myoblastes murins encapsulés dans des souris, afin d'investiguer les rôles respectifs de la réponse immunitaire du receveur et des besoins métaboliques cellulaires sur leur survie à long terme. Les cellules ont été encapsulées à différentes densités et les animaux transplantés se sont vus administrer des injections de molécules anti-inflammatoires ou immunosuppressives. Les résultats ont démontré qu'une réaction immunologique péri-capsulaire était à la base du rejet cellulaire dans le cas de capsules à haute densité cellulaire. Une matrice de PVA peut limiter cette densité et éviter une mort cellulaire précoce due à une insuffisance métabolique et par conséquent prévenir la réaction immunitaire. Ce travail a permis le développement de cellules encapsulées d'origine humaine sécrétant des taux d'Epo humaine adaptés à des traitements cliniques. De pair avec l'optimalisation des paramètres d'encapsulation, ces résultats ont abouti à l'initiation d'une application clinique destinée à des patients en insuffisance rénale terminale.