56 resultados para electrospray ionisation
em Université de Lausanne, Switzerland
Resumo:
A liquid chromatography method coupled to mass spectrometry was developed for the quantification of bupropion, its metabolite hydroxy-bupropion, moclobemide, reboxetine and trazodone in human plasma. The validation of the analytical procedure was assessed according to Société Française des Sciences et Techniques Pharmaceutiques and the latest Food and Drug Administration guidelines. The sample preparation was performed with 0.5mL of plasma extracted on a cation-exchange solid phase 96-well plate. The separation was achieved in 14min on a C18 XBridge column (2.1mm×100mm, 3.5μm) using a 50mM ammonium acetate pH 9/acetonitrile mobile phase in gradient mode. The compounds of interest were analysed in the single ion monitoring mode on a single quadrupole mass spectrometer working in positive electrospray ionisation mode. Two ions were selected per molecule to increase the number of identification points and to avoid as much as possible any false positives. Since selectivity is always a critical point for routine therapeutic drug monitoring, more than sixty common comedications for the psychiatric population were tested. For each analyte, the analytical procedure was validated to cover the common range of concentrations measured in plasma samples: 1-400ng/mL for reboxetine and bupropion, 2-2000ng/mL for hydroxy-bupropion, moclobemide, and trazodone. For all investigated compounds, reliable performance in terms of accuracy, precision, trueness, recovery, selectivity and stability was obtained. One year after its implementation in a routine process, this method demonstrated a high robustness with accurate values over the wide concentration range commonly observed among a psychiatric population.
Resumo:
The induction of fungal metabolites by fungal co-cultures grown on solid media was explored using multi-well co-cultures in 2 cm diameter Petri dishes. Fungi were grown in 12-well plates to easily and rapidly obtain the large number of replicates necessary for employing metabolomic approaches. Fungal culture using such a format accelerated the production of metabolites by several weeks compared with using the large-format 9 cm Petri dishes. This strategy was applied to a co-culture of a Fusarium and an Aspergillus strain. The metabolite composition of the cultures was assessed using ultra-high pressure liquid chromatography coupled to electrospray ionisation and time-of-flight mass spectrometry, followed by automated data mining. The de novo production of metabolites was dramatically increased by nutriment reduction. A time-series study of the induction of the fungal metabolites of interest over nine days revealed that they exhibited various induction patterns. The concentrations of most of the de novo induced metabolites increased over time. However, interesting patterns were observed, such as with the presence of some compounds only at certain time points. This result indicates the complexity and dynamic nature of fungal metabolism. The large-scale production of the compounds of interest was verified by co-culture in 15 cm Petri dishes; most of the induced metabolites of interest (16/18) were found to be produced as effectively as on a small scale, although not in the same time frames. Large-scale production is a practical solution for the future production, identification and biological evaluation of these metabolites.
Resumo:
Raltegravir (RAL), maraviroc (MVC), darunavir (DRV), and etravirine (ETV) are new antiretroviral agents with significant potential for drug interactions. This work describes a sensitive and accurate liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of plasma drug levels. Single-step extraction of RAL, MVC, DRV, ETV and RTV from plasma (100 microl) is performed by protein precipitation using 600 microl of acetonitrile, after the addition of 100 microl darunavir-d(9) (DRV-d(9)) at 1000 ng/ml in MeOH/H(2)O 50/50 as internal standard (I.S.). The mixture is vortexed, sonicated for 10 min, vortex-mixed again and centrifuged. An aliquot of supernatant (150 microl) is diluted 1:1 with a mixture of 20 mM ammonium acetate/MeOH 40/60 and 10 microl is injected onto a 2.1 x 50 mm Waters Atlantis-dC18 3 microm analytical column. Chromatographic separations are performed using a gradient program with 2 mM ammonium acetate containing 0.1% formic acid and acetonitrile with 0.1% formic acid. Analytes quantification is performed by electrospray ionisation-triple quadrupole mass spectrometry using the selected reaction monitoring detection in the positive mode. The method has been validated over the clinically relevant concentrations ranging from 12.5 to 5000 ng/ml, 2.5 to 1000 ng/ml, 25 to 10,000 ng/ml, 10 to 4000 ng/ml, and 5 to 2000 ng/ml for RAL, MRV, DRV, ETV and RTV, respectively. The extraction recovery for all antiretroviral drugs is always above 91%. The method is precise, with mean inter-day CV% within 5.1-9.8%, and accurate (range of inter-day deviation from nominal values -3.3 to +5.1%). In addition our method enables the simultaneous assessment of raltegravir-glucuronide. This is the first analytical method allowing the simultaneous assay of antiretroviral agents targeted to four different steps of HIV replication. The proposed method is suitable for the Therapeutic Drug Monitoring Service of these new regimen combinations administered as salvage therapy to patients having experienced treatment failure, and for whom exposure, tolerance and adherence assessments are critical.
Resumo:
The general strategy to perform anti-doping analyses of urine samples starts with the screening for a wide range of compounds. This step should be fast, generic and able to detect any sample that may contain a prohibited substance while avoiding false negatives and reducing false positive results. The experiments presented in this work were based on ultra-high-pressure liquid chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry. Thanks to the high sensitivity of the method, urine samples could be diluted 2-fold prior to injection. One hundred and three forbidden substances from various classes (such as stimulants, diuretics, narcotics, anti-estrogens) were analysed on a C(18) reversed-phase column in two gradients of 9min (including two 3min equilibration periods) for positive and negative electrospray ionisation and detected in the MS full scan mode. The automatic identification of analytes was based on retention time and mass accuracy, with an automated tool for peak picking. The method was validated according to the International Standard for Laboratories described in the World Anti-Doping Code and was selective enough to comply with the World Anti-Doping Agency recommendations. In addition, the matrix effect on MS response was measured on all investigated analytes spiked in urine samples. The limits of detection ranged from 1 to 500ng/mL, allowing the identification of all tested compounds in urine. When a sample was reported positive during the screening, a fast additional pre-confirmatory step was performed to reduce the number of confirmatory analyses.
Resumo:
Stimulants are banned in-competition for all categories of sports by the World Anti-Doping Agency. A simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay employing electrospray ionisation in positive mode was developed in that work for the quantification in urine specimens of 4-methyl-2-hexaneamine, a primary amine exhibiting sympathomimetic properties. Following a simple pretreatment procedure, the analyte was separated using a gradient mobile phase on reverse phase C8 column. Selected reaction monitoring m/z 116.2-->57.3 was specific for detection of 4-methyl-2-hexaneamine and the assay exhibited a linear dynamic range of 50-700 ng/mL. The validated method has been successfully applied to analyze the target compound in food supplements as well as in urine specimens. The administered drug (40 mg) was detected at the level of 350 ng/mL in the urine up to 4 days.
Resumo:
Laser desorption ionisation mass spectrometry (LDI-MS) has demonstrated to be an excellent analytical method for the forensic analysis of inks on a questioned document. The ink can be analysed directly on its substrate (paper) and hence offers a fast method of analysis as sample preparation is kept to a minimum and more importantly, damage to the document is minimised. LDI-MS has also previously been reported to provide a high power of discrimination in the statistical comparison of ink samples and has the potential to be introduced as part of routine ink analysis. This paper looks into the methodology further and evaluates statistically the reproducibility and the influence of paper on black gel pen ink LDI-MS spectra; by comparing spectra of three different black gel pen inks on three different paper substrates. Although generally minimal, the influences of sample homogeneity and paper type were found to be sample dependent. This should be taken into account to avoid the risk of false differentiation of black gel pen ink samples. Other statistical approaches such as principal component analysis (PCA) proved to be a good alternative to correlation coefficients for the comparison of whole mass spectra.
Resumo:
A dual-channel electrospray microchip has been developed for electrospray ionization mass spectrometry (ESI-MS) where aqueous samples are mixed at the Taylor cone with an organic buffer. Due to the fast and effective mixing in the Taylor cone, the aqueous sample can be well ionized with a high ion intensity. The influence of geometric parameters such as the distance between the two microchannels at their junction at the tip of the emitter has been investigated together with chemical parameters such as the organic buffer composition.
Resumo:
Gas chromatography (GC) is an analytical tool very useful to investigate the composition of gaseous mixtures. However, hydrogen (H2) detection after a GC separation is only possible with a Thermal Conductivity Detector (TCD), a Helium Ionisation Detector (HID) or expensive Atomic Emission Detector (AED). Recently, indirect H2 detection by GC coupled to mass spectrometry (MS) was demonstrated but the mechanism of carrier gas protonation remained unclear. With electron impact as ionisation source of MS and helium (He) as GC carrier gas, H2 is not ionised according the expected Penning ionisation neither according to the Associative ionisation. Rearrangement ionisation (RI) was found to be the main channel for H2 and D2 ionisation under GC-MS conditions used in most of laboratories using GC-MS, leading to the formation of [He−H]+ and [He−D]+ ions.
Resumo:
A simple and sensitive liquid chromatography-electrospray ionization mass spectrometry method was developed for the simultaneous quantification in human plasma of all selective serotonin reuptake inhibitors (citalopram, fluoxetine, fluvoxamine, paroxetine and sertraline) and their main active metabolites (desmethyl-citalopram and norfluoxetine). A stable isotope-labeled internal standard was used for each analyte to compensate for the global method variability, including extraction and ionization variations. After sample (250μl) pre-treatment with acetonitrile (500μl) to precipitate proteins, a fast solid-phase extraction procedure was performed using mixed mode Oasis MCX 96-well plate. Chromatographic separation was achieved in less than 9.0min on a XBridge C18 column (2.1×100mm; 3.5μm) using a gradient of ammonium acetate (pH 8.1; 50mM) and acetonitrile as mobile phase at a flow rate of 0.3ml/min. The method was fully validated according to Société Française des Sciences et Techniques Pharmaceutiques protocols and the latest Food and Drug Administration guidelines. Six point calibration curves were used to cover a large concentration range of 1-500ng/ml for citalopram, desmethyl-citalopram, paroxetine and sertraline, 1-1000ng/ml for fluoxetine and fluvoxamine, and 2-1000ng/ml for norfluoxetine. Good quantitative performances were achieved in terms of trueness (84.2-109.6%), repeatability (0.9-14.6%) and intermediate precision (1.8-18.0%) in the entire assay range including the lower limit of quantification. Internal standard-normalized matrix effects were lower than 13%. The accuracy profiles (total error) were mainly included in the acceptance limits of ±30% for biological samples. The method was successfully applied for routine therapeutic drug monitoring of more than 1600 patient plasma samples over 9 months. The β-expectation tolerance intervals determined during the validation phase were coherent with the results of quality control samples analyzed during routine use. This method is therefore precise and suitable both for therapeutic drug monitoring and pharmacokinetic studies in most clinical laboratories.
Resumo:
Die Differenzierung von Tinten erweist sich oft als wichtig in der Echtheitsprüfung von Dokumenten. Sie wird üblicherweise durch optische Vergleiche und Dünnschicht Chromatographie durchgeführt (TLC). Laser Desorption Ionisation Massenspektrometrie (LDI-MS) ist auch als nützlich gefunden worden und besonders leistungsfähig um Farbstoffe aus Kugelschreibertinte zu analysieren. Diese analytische Methode ist mit Hochleistungs Dünnschichtchromatografie TLC (HPTLC) verglichen worden, mit dem Ziel deren Tinten-Differenzierungskapazität zu testen. Tinteneinträge von 31 blauen Kugelschreibern sind analysiert worden und gemäß deren Farbstoffzusammensetzung klassifiziert worden. Typische Farbstoffe sind durch beide Methoden identifiziert worden und mehrere sind in vielen Tinten-Zusammensetzungen gefunden worden. LDI-MS ist leistungsfähiger als HPTLC um Tinten zu differenzieren, weil es Informationen über Farbstoffstrukturen (Molekular Gewicht) enthält und eine präzise relative Quantifizierung (Signalfläche) erlaubt. Dazu ist für LDI-MS Proben die Vorbereitung minimal und die Analysezeit kurz im Vergleich zu HPTLC mehr komplexen Schritte, wie Extraktionen, Spots Applikationen und Lösungsmittelelution. Allerdings sind mit LDI-MS zwei Analysen nötig um kationische und anionische Farbstoffe zu analysieren, während mit HPTLC nur eine Analyse nötig ist.
Resumo:
Clenbuterol is a β2 agonist agent with anabolic properties given by the increase in the muscular mass in parallel to the decrease of the body fat. For this reason, the use of clenbuterol is forbidden by the World Anti-Doping Agency (WADA) in the practice of sport. This compound is of particular interest for anti-doping authorities and WADA-accredited laboratories due to the recent reporting of risk of unintentional doping following the eating of meat contaminated with traces of clenbuterol in some countries. In this work, the development and the validation of an ultra-high pressure liquid chromatography coupled to electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) method for the quantification of clenbuterol in human urine is described. The analyte was extracted from urine samples by liquid-liquid extraction (LLE) in basic conditions using tert butyl-methyl ether (TBME) and analyzed by UHPLC-MS/MS with a linear gradient of acetonitrile in 9min only. The simple and rapid method presented here was validated in compliance with authority guidelines and showed a limit of quantification at 5pg/mL and a linearity range from 5pg/mL to 300pg/mL. Good trueness (85.8-105%), repeatability (5.7-10.6% RSD) and intermediate precision (5.9-14.9% RSD) results were obtained. The method was then applied to real samples from eighteen volunteers collecting urines after single oral doses administration (1, 5 and 10μg) of clenbuterol-enriched yogurts.
Resumo:
Mirtazapine is an antidepressant that acts specifically on noradrenergic and sertonergic receptors. A LC-MS method was developed that allows the simultaneous analysis of the R-(-)- and S-(+)-enantiomers of mirtazapine (MIR), demethylmirtazapine (DMIR), and 8-hydroxymirtazapine (8-OH-MIR) in plasma of MIR-treated patients. The method involves a 3-step liquid-liquid extraction, an HPLC separation on a Chirobiotic V column, and MS detection in electrospray mode. The limit of quantification (LOQ) for all enantiomers was 0.5 ng/mL, and the intra- and interday CVs were within 3.3% to 11.7% (concentration ranges 5-50 ng/mL). A method is also presented for the quantitative analysis of glucuroconjugated MIR and 8-OH-MIR. S-(+)-8-OH-MIR is present in plasma mainly as its glucuronide. Preliminary data suggest that in all patients, except in those comedicated with CYP2D6 inhibitors such as fluoxetine and thioridazine, R-(-)-MIR concentrations were higher than those of S-(+)MIR. Moreover, fluvoxamine seems also to inhibit the metabolism of MIR. Therefore, this method seems to be suitable for the stereoselective assay of MIR and its metabolites in plasma of patients comedicated with MIR and other drugs for routine and research purposes.
Resumo:
Therapeutic drug monitoring (TDM) may contribute to optimizing the efficacy and safety of antifungal therapy because of the large variability in drug pharmacokinetics. Rapid, sensitive, and selective laboratory methods are needed for efficient TDM. Quantification of several antifungals in a single analytical run may best fulfill these requirements. We therefore developed a multiplex ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method requiring 100 μl of plasma for simultaneous quantification within 7 min of fluconazole, itraconazole, hydroxyitraconazole, posaconazole, voriconazole, voriconazole-N-oxide, caspofungin, and anidulafungin. Protein precipitation with acetonitrile was used in a single extraction procedure for eight analytes. After reverse-phase chromatographic separation, antifungals were quantified by electrospray ionization-triple-quadrupole mass spectrometry by selected reaction monitoring detection using the positive mode. Deuterated isotopic compounds of azole antifungals were used as internal standards. The method was validated based on FDA recommendations, including assessment of extraction yields, matrix effect variability (<9.2%), and analytical recovery (80.1 to 107%). The method is sensitive (lower limits of azole quantification, 0.01 to 0.1 μg/ml; those of echinocandin quantification, 0.06 to 0.1 μg/ml), accurate (intra- and interassay biases of -9.9 to +5% and -4.0 to +8.8%, respectively), and precise (intra- and interassay coefficients of variation of 1.2 to 11.1% and 1.2 to 8.9%, respectively) over clinical concentration ranges (upper limits of quantification, 5 to 50 μg/ml). Thus, we developed a simple, rapid, and robust multiplex UPLC-MS/MS assay for simultaneous quantification of plasma concentrations of six antifungals and two metabolites. This offers, by optimized and cost-effective lab resource utilization, an efficient tool for daily routine TDM aimed at maximizing the real-time efficacy and safety of different recommended single-drug antifungal regimens and combination salvage therapies, as well as a tool for clinical research.
Resumo:
As part of a project to use the long-lived (T(1/2)=1200a) (166m)Ho as reference source in its reference ionisation chamber, IRA standardised a commercially acquired solution of this nuclide using the 4pibeta-gamma coincidence and 4pigamma (NaI) methods. The (166m)Ho solution supplied by Isotope Product Laboratories was measured to have about 5% Europium impurities (3% (154)Eu, 0.94% (152)Eu and 0.9% (155)Eu). Holmium had therefore to be separated from europium, and this was carried out by means of ion-exchange chromatography. The holmium fractions were collected without europium contamination: 162h long HPGe gamma measurements indicated no europium impurity (detection limits of 0.01% for (152)Eu and (154)Eu, and 0.03% for (155)Eu). The primary measurement of the purified (166m)Ho solution with the 4pi (PC) beta-gamma coincidence technique was carried out at three gamma energy settings: a window around the 184.4keV peak and gamma thresholds at 121.8 and 637.3keV. The results show very good self-consistency, and the activity concentration of the solution was evaluated to be 45.640+/-0.098kBq/g (0.21% with k=1). The activity concentration of this solution was also measured by integral counting with a well-type 5''x5'' NaI(Tl) detector and efficiencies computed by Monte Carlo simulations using the GEANT code. These measurements were mutually consistent, while the resulting weighted average of the 4pi NaI(Tl) method was found to agree within 0.15% with the result of the 4pibeta-gamma coincidence technique. An ampoule of this solution and the measured value of the concentration were submitted to the BIPM as a contribution to the Système International de Référence.