66 resultados para efficient vulcanisation (EV)

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Innate immune responses play a central role in neuroprotection and neurotoxicity during inflammatory processes that are triggered by pathogen-associated molecular pattern-exhibiting agents such as bacterial lipopolysaccharide (LPS) and that are modulated by inflammatory cytokines such as interferon γ (IFNγ). Recent findings describing the unexpected complexity of mammalian genomes and transcriptomes have stimulated further identification of novel transcripts involved in specific physiological and pathological processes, such as the neural innate immune response that alters the expression of many genes. We developed a system for efficient subtractive cloning that employs both sense and antisense cRNA drivers, and coupled it with in-house cDNA microarray analysis. This system enabled effective direct cloning of differentially expressed transcripts, from a small amount (0.5 µg) of total RNA. We applied this system to isolation of genes activated by LPS and IFNγ in primary-cultured cortical cells that were derived from newborn mice, to investigate the mechanisms involved in neuroprotection and neurotoxicity in maternal/perinatal infections that cause various brain injuries including periventricular leukomalacia. A number of genes involved in the immune and inflammatory response were identified, showing that neonatal neuronal/glial cells are highly responsive to LPS and IFNγ. Subsequent RNA blot analysis revealed that the identified genes were activated by LPS and IFNγ in a cooperative or distinctive manner, thereby supporting the notion that these bacterial and cellular inflammatory mediators can affect the brain through direct but complicated pathways. We also identified several novel clones of apparently non-coding RNAs that potentially harbor various regulatory functions. Characterization of the presently identified genes will give insights into mechanisms and interventions not only for perinatal infection-induced brain damage, but also for many other innate immunity-related brain disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astrocytes are now considered as key players in brain information processing because of their newly discovered roles in synapse formation and plasticity, energy metabolism and blood flow regulation. However, our understanding of astrocyte function is still fragmented compared to other brain cell types. A better appreciation of the biology of astrocytes requires the development of tools to generate animal models in which astrocyte-specific proteins and pathways can be manipulated. In addition, it is becoming increasingly evident that astrocytes are also important players in many neurological disorders. Targeted modulation of protein expression in astrocytes would be critical for the development of new therapeutic strategies. Gene transfer is valuable to target a subpopulation of cells and explore their function in experimental models. In particular, viral-mediated gene transfer provides a rapid, highly flexible and cost-effective, in vivo paradigm to study the impact of genes of interest during central nervous system development or in adult animals. We will review the different strategies that led to the recent development of efficient viral vectors that can be successfully used to selectively transduce astrocytes in the mammalian brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The UHPLC strategy which combines sub-2 microm porous particles and ultra-high pressure (>1000 bar) was investigated considering very high resolution criteria in both isocratic and gradient modes, with mobile phase temperatures between 30 and 90 degrees C. In isocratic mode, experimental conditions to reach the maximal efficiency were determined using the kinetic plot representation for DeltaP(max)=1000 bar. It has been first confirmed that the molecular weight of the compounds (MW) was a critical parameter which should be considered in the construction of such curves. With a MW around 1000 g mol(-1), efficiencies as high as 300,000 plates could be theoretically attained using UHPLC at 30 degrees C. By limiting the column length to 450 mm, the maximal plate count was around 100,000. In gradient mode, the longest column does not provide the maximal peak capacity for a given analysis time in UHPLC. This was attributed to the fact that peak capacity is not only related to the plate number but also to column dead time. Therefore, a compromise should be found and a 150 mm column should be preferentially selected for gradient lengths up to 60 min at 30 degrees C, while the columns coupled in series (3x 150 mm) were attractive only for t(grad)>250 min. Compared to 30 degrees C, peak capacities were increased by about 20-30% for a constant gradient length at 90 degrees C and gradient time decreased by 2-fold for an identical peak capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of the Saccharomyces cerevisae peroxisomal acyl-coenzyme A (acyl-CoA) thioesterase (Pte1p) in fatty acid beta-oxidation was studied by analyzing the in vitro kinetic activity of the purified protein as well as by measuring the carbon flux through the beta-oxidation cycle in vivo using the synthesis of peroxisomal polyhydroxyalkanoate (PHA) from the polymerization of the 3-hydroxyacyl-CoAs as a marker. The amount of PHA synthesized from the degradation of 10-cis-heptadecenoic, tridecanoic, undecanoic, or nonanoic acids was equivalent or slightly reduced in the pte1Delta strain compared with wild type. In contrast, a strong reduction in PHA synthesized from heptanoic acid and 8-methyl-nonanoic acid was observed for the pte1Delta strain compared with wild type. The poor catabolism of 8-methyl-nonanoic acid via beta-oxidation in pte1Delta negatively impacted the degradation of 10-cis-heptadecenoic acid and reduced the ability of the cells to efficiently grow in medium containing such fatty acids. An increase in the proportion of the short chain 3-hydroxyacid monomers was observed in PHA synthesized in pte1Delta cells grown on a variety of fatty acids, indicating a reduction in the metabolism of short chain acyl-CoAs in these cells. A purified histidine-tagged Pte1p showed high activity toward short and medium chain length acyl-CoAs, including butyryl-CoA, decanoyl-CoA and 8-methyl-nonanoyl-CoA. The kinetic parameters measured for the purified Pte1p fit well with the implication of this enzyme in the efficient metabolism of short straight and branched chain fatty acyl-CoAs by the beta-oxidation cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg) play an important role in the induction and maintenance of immune tolerance. Although adoptive transfer of bulk populations of Treg can prevent or treat T cell-mediated inflammatory diseases and transplant allograft rejection in animal models, optimal Treg immunotherapy in humans would ideally use antigen-specific rather than polyclonal Treg for greater specificity of regulation and avoidance of general suppression. However, no robust approaches have been reported for the generation of human antigen-specific Treg at a practical scale for clinical use. Here, we report a simple and cost-effective novel method to rapidly induce and expand large numbers of functional human alloantigen-specific Treg from antigenically naive precursors in vitro using allogeneic nontransformed B cells as stimulators. By this approach naive CD4(+)CD25(-) T cells could be expanded 8-fold into alloantigen-specific Treg after 3 weeks of culture without any exogenous cytokines. The induced alloantigen-specific Treg were CD45RO(+)CCR7(-) memory cells, and had a CD4(high), CD25(+), Foxp3(+), and CD62L (L-selectin)(+) phenotype. Although these CD4(high)CD25(+)Foxp3(+) alloantigen-specific Treg had no cytotoxic capacity, their suppressive function was cell-cell contact dependent and partially relied on cytotoxic T lymphocyte antigen-4 expression. This approach may accelerate the clinical application of Treg-based immunotherapy in transplantation and autoimmune diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel procedure is presented describing the induction of antigen-specific cytolytic T lymphocytes (CTL) in vivo, that uses as immunogen syngeneic Concanavalin A stimulated spleen cells expressing H-2Kd (Kd) molecules photocrosslinked with a photoreactive peptide derivative. The Kd restricted Plasmodium berghei circumsporozoite (PbCS) peptide 253-260 (YIPSAEKI) was conjugated with photoreactive iodo-4-azidosalicylic acid (IASA) at the NH2-terminus and with 4-azidobenzoic acid (ABA) at the TCR contact residue Lys259 to make IASA-YIPSAEK(ABA)I. Selective photoactivation of the IASA group allowed specific photoaffinity labeling of cell-associated Kd molecules. Optimal peptide derivative binding to Kd molecules of concanavalin A stimulated spleen cells was obtained upon 4-6 h incubation at 26 degrees C in the presence of human beta 2 microglobulin. Photocrosslinking prevented the rapid dissociation of cell-associated Kd-peptide derivative complexes at 37 degrees C. The photoaffinity labeled cells were injected i.p. into syngeneic recipients. After 10 days, the peritoneal exudate lymphocytes were harvested and in vitro stimulated with peptide derivative pulsed P815 mastocytoma cells. The resulting bulk cultures displayed high cytolytic activity that was specific for IASA-YIPSAEK(ABA)I and YIPSAEK(ABA)I. In contrast, peritoneal exudate lymphocytes from mice inoculated with concanavalin A blasts that were pulsed, but not photocrosslinked, with IASA-YIPSAEK(ABA)I expressed only marginal levels of IASA-YIPSAEK(ABA)I-specific cytolytic activity. This immunization strategy, using neither adjuvants nor potentially hazardous transfected/transformed cells, is safe and should be universally applicable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromatin remodeling and histone modification are essential for eukaryotic transcription regulation, but little is known about chromatin-modifying activities acting on RNA polymerase III (Pol III)-transcribed genes. The human U6 small nuclear RNA promoter, located 5' of the transcription start site, consists of a core region directing basal transcription and an activating region that recruits the transcription factors Oct-1 and Staf (ZNF143). Oct-1 activates transcription in part by helping recruit core binding factors, but nothing is known about the mechanisms of transcription activation by Staf. We show that Staf activates U6 transcription from a preassembled chromatin template in vitro and associates with several proteins linked to chromatin modification, among them chromodomain-helicase-DNA binding protein 8 (CHD8). CHD8 binds to histone H3 di- and trimethylated on lysine 4. It resides on the human U6 promoter as well as the mRNA IRF3 promoter in vivo and contributes to efficient transcription from both these promoters. Thus, Pol III transcription from type 3 promoters uses some of the same factors used for chromatin remodeling at Pol II promoters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extraordinary sensitivity of CD8+ T cells to recognize antigen impinges to a large extent on the coreceptor CD8. While several studies have shown that the CD8beta chain endows CD8 with efficient coreceptor function, the molecular basis for this is enigmatic. Here we report that cell-associated CD8alphabeta, but not CD8alphaalpha or soluble CD8alphabeta, substantially increases the avidity of T cell receptor (TCR)-ligand binding. To elucidate how the cytoplasmic and transmembrane portions of CD8beta endow CD8 with efficient coreceptor function, we examined T1.4 T cell hybridomas transfected with various CD8beta constructs. T1.4 hybridomas recognize a photoreactive Plasmodium berghei circumsporozoite (PbCS) peptide derivative (PbCS (4-azidobezoic acid [ABA])) in the context of H-2K(d), and permit assessment of TCR-ligand binding by TCR photoaffinity labeling. We find that the cytoplasmic portion of CD8beta, mainly due to its palmitoylation, mediates partitioning of CD8 in lipid rafts, where it efficiently associates with p56(lck). In addition, the cytoplasmic portion of CD8beta mediates constitutive association of CD8 with TCR/CD3. The resulting TCR-CD8 adducts exhibit high affinity for major histocompatibility complex (MHC)-peptide. Importantly, because CD8alphabeta partitions in rafts, its interaction with TCR/CD3 promotes raft association of TCR/CD3. Engagement of these TCR/CD3-CD8/lck adducts by multimeric MHC-peptide induces activation of p56(lck) in rafts, which in turn phosphorylates CD3 and initiates T cell activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cervical cancer is a public health concern as it represents the second cause of cancer death in women worldwide. High-risk human papillomaviruses (HPV) are the etiologic agents, and HPV E6 and/or E7 oncogene-specific therapeutic vaccines are under development to treat HPV-related lesions in women. Whether the use of mucosal routes of immunization may be preferable for inducing cell-mediated immune responses able to eradicate genital tumors is still debated because of the uniqueness of the female genital mucosa (GM) and the limited experimentation. Here, we compared the protective activity resulting from immunization of mice via intranasal (i.n.), intravaginal (IVAG) or subcutaneous (s.c.) routes with an adjuvanted HPV type 16 E7 polypeptide vaccine. Our data show that s.c. and i.n. immunizations elicited similar frequencies and avidity of TetE71CD81 and E7-specific Interferon-gamma-secreting cells in the GM, whereas slightly lower immune responses were induced by IVAG immunization. In a novel orthotopic murine model, both s.c. and i.n. immunizations allowed for complete long-term protection against genital E7-expressing tumor challenge. However, only s.c. immunization induced complete regression of already established genital tumors. This suggests that the higher E7-specific systemic response observed after s.c. immunization may contribute to the regression of growing genital tumors, whereas local immune responses may be sufficient to impede genital challenges. Thus, our data show that for an efficiently adjuvanted protein-based vaccine, parenteral vaccination route is superior to mucosal vaccination route for inducing regression of established genital tumors in a murine model of HPV-associated genital cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In otherwise successful gene therapy trials for the treatment of SCID patients and others, insertional mutagenesis has resulted in leukemia development. Besides the integration of vectors that including strong enhancers, more recently, SIN-vectors have been shown to partially retain oncogenic potential. The identification of genetic elements which would both prevent such activation effects and shield the transgene from silencing, is a main challenge. Previous attempts met with difficulties in producing the vectors and poor efficacy of the insulators (GIE). The improvement of integrating vectors safety has been investigated using new candidate synthetic GIEs. The latter have been introduced in retroviral and lentiviral vectors. Native LTRs, SIN-LTRs, and SIN-insulated constructs have been designed and compared, using two sets of internal promoter, i.e. strong and housekeeping. We could establish that a specific insulator translates at best into functional activity and boundary effect in both vector types. We could also determine that other genetic elements are key determinants in order to achieve accurate expression and viral titre, from these insulated vectors. A dramatic shift in the expression profile is observed in target cells, with a homogenous pattern including data on both cell-lines and primary HSCs from cord blood. The assessment of potential genotoxicity will be presented, based on the comparison of the integration patterns ingenuity in human target cells sampled over a three months period with both reference LTRs and SIN versus test insulated vectors, using high-throughput pyro-sequencing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional magnetic resonance imaging studies have indicated that efficient feature search (FS) and inefficient conjunction search (CS) activate partially distinct frontoparietal cortical networks. However, it remains a matter of debate whether the differences in these networks reflect differences in the early processing during FS and CS. In addition, the relationship between the differences in the networks and spatial shifts of attention also remains unknown. We examined these issues by applying a spatio-temporal analysis method to high-resolution visual event-related potentials (ERPs) and investigated how spatio-temporal activation patterns differ for FS and CS tasks. Within the first 450 msec after stimulus onset, scalp potential distributions (ERP maps) revealed 7 different electric field configurations for each search task. Configuration changes occurred simultaneously in the two tasks, suggesting that contributing processes were not significantly delayed in one task compared to the other. Despite this high spatial and temporal correlation, two ERP maps (120-190 and 250-300 msec) differed between the FS and CS. Lateralized distributions were observed only in the ERP map at 250-300 msec for the FS. This distribution corresponds to that previously described as the N2pc component (a negativity in the time range of the N2 complex over posterior electrodes of the hemisphere contralateral to the target hemifield), which has been associated with the focusing of attention onto potential target items in the search display. Thus, our results indicate that the cortical networks involved in feature and conjunction searching partially differ as early as 120 msec after stimulus onset and that the differences between the networks employed during the early stages of FS and CS are not necessarily caused by spatial attention shifts.