113 resultados para efficient algorithm
em Université de Lausanne, Switzerland
Resumo:
We present a novel spatiotemporal-adaptive Multiscale Finite Volume (MsFV) method, which is based on the natural idea that the global coarse-scale problem has longer characteristic time than the local fine-scale problems. As a consequence, the global problem can be solved with larger time steps than the local problems. In contrast to the pressure-transport splitting usually employed in the standard MsFV approach, we propose to start directly with a local-global splitting that allows to locally retain the original degree of coupling. This is crucial for highly non-linear systems or in the presence of physical instabilities. To obtain an accurate and efficient algorithm, we devise new adaptive criteria for global update that are based on changes of coarse-scale quantities rather than on fine-scale quantities, as it is routinely done before in the adaptive MsFV method. By means of a complexity analysis we show that the adaptive approach gives a noticeable speed-up with respect to the standard MsFV algorithm. In particular, it is efficient in case of large upscaling factors, which is important for multiphysics problems. Based on the observation that local time stepping acts as a smoother, we devise a self-correcting algorithm which incorporates the information from previous times to improve the quality of the multiscale approximation. We present results of multiphase flow simulations both for Darcy-scale and multiphysics (hybrid) problems, in which a local pore-scale description is combined with a global Darcy-like description. The novel spatiotemporal-adaptive multiscale method based on the local-global splitting is not limited to porous media flow problems, but it can be extended to any system described by a set of conservation equations.
Resumo:
In this paper we study the relevance of multiple kernel learning (MKL) for the automatic selection of time series inputs. Recently, MKL has gained great attention in the machine learning community due to its flexibility in modelling complex patterns and performing feature selection. In general, MKL constructs the kernel as a weighted linear combination of basis kernels, exploiting different sources of information. An efficient algorithm wrapping a Support Vector Regression model for optimizing the MKL weights, named SimpleMKL, is used for the analysis. In this sense, MKL performs feature selection by discarding inputs/kernels with low or null weights. The approach proposed is tested with simulated linear and nonlinear time series (AutoRegressive, Henon and Lorenz series).
Resumo:
Fetal MRI reconstruction aims at finding a high-resolution image given a small set of low-resolution images. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has considered several regularization terms s.a. Dirichlet/Laplacian energy, Total Variation (TV)- based energies and more recently non-local means. Although TV energies are quite attractive because of their ability in edge preservation, standard explicit steepest gradient techniques have been applied to optimize fetal-based TV energies. The main contribution of this work lies in the introduction of a well-posed TV algorithm from the point of view of convex optimization. Specifically, our proposed TV optimization algorithm or fetal reconstruction is optimal w.r.t. the asymptotic and iterative convergence speeds O(1/n2) and O(1/√ε), while existing techniques are in O(1/n2) and O(1/√ε). We apply our algorithm to (1) clinical newborn data, considered as ground truth, and (2) clinical fetal acquisitions. Our algorithm compares favorably with the literature in terms of speed and accuracy.
Resumo:
Although fetal anatomy can be adequately viewed in new multi-slice MR images, many critical limitations remain for quantitative data analysis. To this end, several research groups have recently developed advanced image processing methods, often denoted by super-resolution (SR) techniques, to reconstruct from a set of clinical low-resolution (LR) images, a high-resolution (HR) motion-free volume. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has been quite attracted by Total Variation energies because of their ability in edge preserving but only standard explicit steepest gradient techniques have been applied for optimization. In a preliminary work, it has been shown that novel fast convex optimization techniques could be successfully applied to design an efficient Total Variation optimization algorithm for the super-resolution problem. In this work, two major contributions are presented. Firstly, we will briefly review the Bayesian and Variational dual formulations of current state-of-the-art methods dedicated to fetal MRI reconstruction. Secondly, we present an extensive quantitative evaluation of our SR algorithm previously introduced on both simulated fetal and real clinical data (with both normal and pathological subjects). Specifically, we study the robustness of regularization terms in front of residual registration errors and we also present a novel strategy for automatically select the weight of the regularization as regards the data fidelity term. Our results show that our TV implementation is highly robust in front of motion artifacts and that it offers the best trade-off between speed and accuracy for fetal MRI recovery as in comparison with state-of-the art methods.
Resumo:
Fetal MRI reconstruction aims at finding a high-resolution image given a small set of low-resolution images. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has considered several regularization terms s.a. Dirichlet/Laplacian energy [1], Total Variation (TV)based energies [2,3] and more recently non-local means [4]. Although TV energies are quite attractive because of their ability in edge preservation, standard explicit steepest gradient techniques have been applied to optimize fetal-based TV energies. The main contribution of this work lies in the introduction of a well-posed TV algorithm from the point of view of convex optimization. Specifically, our proposed TV optimization algorithm for fetal reconstruction is optimal w.r.t. the asymptotic and iterative convergence speeds O(1/n(2)) and O(1/root epsilon), while existing techniques are in O(1/n) and O(1/epsilon). We apply our algorithm to (1) clinical newborn data, considered as ground truth, and (2) clinical fetal acquisitions. Our algorithm compares favorably with the literature in terms of speed and accuracy.
Resumo:
Le rétinoblastome (Rb) est une tumeur provenant des cellules rétiniennes progénitrices des photorécepteurs. C'est la tumeur pédiatrique maligne la plus fréquente avec une incidence par naissance évaluée entre 1/15Ό00 et 1/20Ό00. Les enfants atteints de Rb sont diagnostiqué dans leur grande majorité avant l'âge de 4 ans, soit le temps nécessaire à la différentiation et à la maturation des photorécepteurs et donc à la disparition de la cellule d'origine du Rb. La survie du patient, la sauvegarde oculaire et le pronostic visuel restent excellents pour autant que le traitement ne soit pas différé. Dans sa variante non héréditaire (60%) le Rb est toujours unilatéral et sporadique. Le Rb héréditaire de transmission dominante autosomique (40%), se décline sous toutes les formes, familiale (10%) ou sporadique (30%), que l'atteinte soit unilatérale ou bilatérale. La majorité des mutations causales sont uniques et distribuées de façon aléatoire sur la totalité du gène RB1 sans région prédisposante. La détection de ces mutations est couteuse et chronophage, tout en présentant un taux de détection relativement bas; surtout dans les cas de Rb sporadiques unilatéraux. Dans le but d'identifier les patients présentant un risque réel de développer un Rb, et de réduire le nombre d'examens sous narcose requis pour le dépistage de la maladie chez les sujets à risque, nous avons développé une stratégie sensible, rapide, efficace et peu couteuse basée sur une analyse de l'haplotype intragénique. Cet algorithme prend en compte a) la perte d'hétérozygotie intratumorale du gène RB1, b) l'origine paternelle préférentielle des nouvelles mutations germinales et c) un risque a priori dérivé des données empiriques de Vogel. Pendant la période allant de janvier 1994 à décembre 2006, nous avons comparé l'apparition de nouveau Rb parmi la fratrie et la descendance de patient atteints au nombre de nouveaux cas attendus calculé par notre algorithme. 134 familles ont été étudiées. L'analyse moléculaire a été effectuée chez 570 personnes dont 99 patients âgés de moins de 4 ans et donc à risque de développer un Rb. Parmi cette cohorte, nous avons observé l'apparition d'un cas de Rb, alors que les risques cumulés a posteriori calculé par notre algorithme prédisait l'apparition de 1.77 nouveau cas. Dans cette étude, nous avons pu valider notre algorithme prédisant la récurrence de Rb chez les parents de 1er degré de patients atteints. Cet outil devrait grandement faciliter le conseil génétique ainsi que le suivi des patients à risque de développer un Rb, surtout dans les cas ou le séquençage direct du gène RB1 n'est pas disponible ou est resté non informatif. - Purpose: Most RBI mutations are unique and distributed throughout the RBI gene. Their detection can be time-consuming and the yield especially low in cases of conservatively-treated sporadic unilateral retinoblas-toma (Rb) patients. In order to identify patients with true risk of developing Rb, and to reduce the number of unnecessary examinations under anesthesia in all other cases, we developed a universal sensitive, efficient and cost-effective strategy based on intragenic haplotype analysis. Methods: This algorithm allows the calculation of the a posteriori risk of developing Rb and takes into account (a) RBI loss of heterozygosity in tumors, (b) preferential paternal origin of new germline mutations, (c) a priori risk derived from empirical data by Vogel, and (d) disease penetrance of 90% in most cases. We report the occurrence of Rb in first degree relatives of patients with sporadic Rb who visited the Jules Gonin Eye Hospital, Lausanne, Switzerland, from January 1994 to December 2006 compared to expected new cases of Rb using our algorithm. Results: A total of 134 families with sporadic Rb were enrolled; testing was performed in 570 individuals and 99 patients younger than 4 years old were identified. We observed one new case of Rb. Using our algorithm, the cumulated total a posteriori risk of recurrence was 1.77. Conclusions: This is the first time that linkage analysis has been validated to monitor the risk of recurrence in sporadic Rb. This should be a useful tool in genetic counseling, especially when direct RBI screening for mutations leaves a negative result or is unavailable.
Resumo:
PURPOSE: Most RB1 mutations are unique and distributed throughout the RB1 gene. Their detection can be time-consuming and the yield especially low in cases of conservatively-treated sporadic unilateral retinoblastoma (Rb) patients. In order to identify patients with true risk of developing Rb, and to reduce the number of unnecessary examinations under anesthesia in all other cases, we developed a universal sensitive, efficient and cost-effective strategy based on intragenic haplotype analysis. METHODS: This algorithm allows the calculation of the a posteriori risk of developing Rb and takes into account (a) RB1 loss of heterozygosity in tumors, (b) preferential paternal origin of new germline mutations, (c) a priori risk derived from empirical data by Vogel, and (d) disease penetrance of 90% in most cases. We report the occurrence of Rb in first degree relatives of patients with sporadic Rb who visited the Jules Gonin Eye Hospital, Lausanne, Switzerland, from January 1994 to December 2006 compared to expected new cases of Rb using our algorithm. RESULTS: A total of 134 families with sporadic Rb were enrolled; testing was performed in 570 individuals and 99 patients younger than 4 years old were identified. We observed one new case of Rb. Using our algorithm, the cumulated total a posteriori risk of recurrence was 1.77. CONCLUSIONS: This is the first time that linkage analysis has been validated to monitor the risk of recurrence in sporadic Rb. This should be a useful tool in genetic counseling, especially when direct RB1 screening for mutations leaves a negative result or is unavailable.
Resumo:
Segmenting ultrasound images is a challenging problemwhere standard unsupervised segmentation methods such asthe well-known Chan-Vese method fail. We propose in thispaper an efficient segmentation method for this class ofimages. Our proposed algorithm is based on asemi-supervised approach (user labels) and the use ofimage patches as data features. We also consider thePearson distance between patches, which has been shown tobe robust w.r.t speckle noise present in ultrasoundimages. Our results on phantom and clinical data show avery high similarity agreement with the ground truthprovided by a medical expert.
Resumo:
The multiscale finite-volume (MSFV) method is designed to reduce the computational cost of elliptic and parabolic problems with highly heterogeneous anisotropic coefficients. The reduction is achieved by splitting the original global problem into a set of local problems (with approximate local boundary conditions) coupled by a coarse global problem. It has been shown recently that the numerical errors in MSFV results can be reduced systematically with an iterative procedure that provides a conservative velocity field after any iteration step. The iterative MSFV (i-MSFV) method can be obtained with an improved (smoothed) multiscale solution to enhance the localization conditions, with a Krylov subspace method [e.g., the generalized-minimal-residual (GMRES) algorithm] preconditioned by the MSFV system, or with a combination of both. In a multiphase-flow system, a balance between accuracy and computational efficiency should be achieved by finding a minimum number of i-MSFV iterations (on pressure), which is necessary to achieve the desired accuracy in the saturation solution. In this work, we extend the i-MSFV method to sequential implicit simulation of time-dependent problems. To control the error of the coupled saturation/pressure system, we analyze the transport error caused by an approximate velocity field. We then propose an error-control strategy on the basis of the residual of the pressure equation. At the beginning of simulation, the pressure solution is iterated until a specified accuracy is achieved. To minimize the number of iterations in a multiphase-flow problem, the solution at the previous timestep is used to improve the localization assumption at the current timestep. Additional iterations are used only when the residual becomes larger than a specified threshold value. Numerical results show that only a few iterations on average are necessary to improve the MSFV results significantly, even for very challenging problems. Therefore, the proposed adaptive strategy yields efficient and accurate simulation of multiphase flow in heterogeneous porous media.
Resumo:
BACKGROUND: Surveillance of multiple congenital anomalies is considered to be more sensitive for the detection of new teratogens than surveillance of all or isolated congenital anomalies. Current literature proposes the manual review of all cases for classification into isolated or multiple congenital anomalies. METHODS: Multiple anomalies were defined as two or more major congenital anomalies, excluding sequences and syndromes. A computer algorithm for classification of major congenital anomaly cases in the EUROCAT database according to International Classification of Diseases (ICD)v10 codes was programmed, further developed, and implemented for 1 year's data (2004) from 25 registries. The group of cases classified with potential multiple congenital anomalies were manually reviewed by three geneticists to reach a final agreement of classification as "multiple congenital anomaly" cases. RESULTS: A total of 17,733 cases with major congenital anomalies were reported giving an overall prevalence of major congenital anomalies at 2.17%. The computer algorithm classified 10.5% of all cases as "potentially multiple congenital anomalies". After manual review of these cases, 7% were agreed to have true multiple congenital anomalies. Furthermore, the algorithm classified 15% of all cases as having chromosomal anomalies, 2% as monogenic syndromes, and 76% as isolated congenital anomalies. The proportion of multiple anomalies varies by congenital anomaly subgroup with up to 35% of cases with bilateral renal agenesis. CONCLUSIONS: The implementation of the EUROCAT computer algorithm is a feasible, efficient, and transparent way to improve classification of congenital anomalies for surveillance and research.
Resumo:
The algorithmic approach to data modelling has developed rapidly these last years, in particular methods based on data mining and machine learning have been used in a growing number of applications. These methods follow a data-driven methodology, aiming at providing the best possible generalization and predictive abilities instead of concentrating on the properties of the data model. One of the most successful groups of such methods is known as Support Vector algorithms. Following the fruitful developments in applying Support Vector algorithms to spatial data, this paper introduces a new extension of the traditional support vector regression (SVR) algorithm. This extension allows for the simultaneous modelling of environmental data at several spatial scales. The joint influence of environmental processes presenting different patterns at different scales is here learned automatically from data, providing the optimum mixture of short and large-scale models. The method is adaptive to the spatial scale of the data. With this advantage, it can provide efficient means to model local anomalies that may typically arise in situations at an early phase of an environmental emergency. However, the proposed approach still requires some prior knowledge on the possible existence of such short-scale patterns. This is a possible limitation of the method for its implementation in early warning systems. The purpose of this paper is to present the multi-scale SVR model and to illustrate its use with an application to the mapping of Cs137 activity given the measurements taken in the region of Briansk following the Chernobyl accident.
Resumo:
The recent developments in high magnetic field 13C magnetic resonance spectroscopy with improved localization and shimming techniques have led to important gains in sensitivity and spectral resolution of 13C in vivo spectra in the rodent brain, enabling the separation of several 13C isotopomers of glutamate and glutamine. In this context, the assumptions used in spectral quantification might have a significant impact on the determination of the 13C concentrations and the related metabolic fluxes. In this study, the time domain spectral quantification algorithm AMARES (advanced method for accurate, robust and efficient spectral fitting) was applied to 13 C magnetic resonance spectroscopy spectra acquired in the rat brain at 9.4 T, following infusion of [1,6-(13)C2 ] glucose. Using both Monte Carlo simulations and in vivo data, the goal of this work was: (1) to validate the quantification of in vivo 13C isotopomers using AMARES; (2) to assess the impact of the prior knowledge on the quantification of in vivo 13C isotopomers using AMARES; (3) to compare AMARES and LCModel (linear combination of model spectra) for the quantification of in vivo 13C spectra. AMARES led to accurate and reliable 13C spectral quantification similar to those obtained using LCModel, when the frequency shifts, J-coupling constants and phase patterns of the different 13C isotopomers were included as prior knowledge in the analysis.
Resumo:
The implicit projection algorithm of isotropic plasticity is extended to an objective anisotropic elastic perfectly plastic model. The recursion formula developed to project the trial stress on the yield surface, is applicable to any non linear elastic law and any plastic yield function.A curvilinear transverse isotropic model based on a quadratic elastic potential and on Hill's quadratic yield criterion is then developed and implemented in a computer program for bone mechanics perspectives. The paper concludes with a numerical study of a schematic bone-prosthesis system to illustrate the potential of the model.
Resumo:
Innate immune responses play a central role in neuroprotection and neurotoxicity during inflammatory processes that are triggered by pathogen-associated molecular pattern-exhibiting agents such as bacterial lipopolysaccharide (LPS) and that are modulated by inflammatory cytokines such as interferon γ (IFNγ). Recent findings describing the unexpected complexity of mammalian genomes and transcriptomes have stimulated further identification of novel transcripts involved in specific physiological and pathological processes, such as the neural innate immune response that alters the expression of many genes. We developed a system for efficient subtractive cloning that employs both sense and antisense cRNA drivers, and coupled it with in-house cDNA microarray analysis. This system enabled effective direct cloning of differentially expressed transcripts, from a small amount (0.5 µg) of total RNA. We applied this system to isolation of genes activated by LPS and IFNγ in primary-cultured cortical cells that were derived from newborn mice, to investigate the mechanisms involved in neuroprotection and neurotoxicity in maternal/perinatal infections that cause various brain injuries including periventricular leukomalacia. A number of genes involved in the immune and inflammatory response were identified, showing that neonatal neuronal/glial cells are highly responsive to LPS and IFNγ. Subsequent RNA blot analysis revealed that the identified genes were activated by LPS and IFNγ in a cooperative or distinctive manner, thereby supporting the notion that these bacterial and cellular inflammatory mediators can affect the brain through direct but complicated pathways. We also identified several novel clones of apparently non-coding RNAs that potentially harbor various regulatory functions. Characterization of the presently identified genes will give insights into mechanisms and interventions not only for perinatal infection-induced brain damage, but also for many other innate immunity-related brain disorders.
Resumo:
Defining an efficient training set is one of the most delicate phases for the success of remote sensing image classification routines. The complexity of the problem, the limited temporal and financial resources, as well as the high intraclass variance can make an algorithm fail if it is trained with a suboptimal dataset. Active learning aims at building efficient training sets by iteratively improving the model performance through sampling. A user-defined heuristic ranks the unlabeled pixels according to a function of the uncertainty of their class membership and then the user is asked to provide labels for the most uncertain pixels. This paper reviews and tests the main families of active learning algorithms: committee, large margin, and posterior probability-based. For each of them, the most recent advances in the remote sensing community are discussed and some heuristics are detailed and tested. Several challenging remote sensing scenarios are considered, including very high spatial resolution and hyperspectral image classification. Finally, guidelines for choosing the good architecture are provided for new and/or unexperienced user.