18 resultados para effective field capacity
em Université de Lausanne, Switzerland
Resumo:
Full-field X-ray microscopy is a valuable tool for 3D observation of biological systems. In the soft X-ray domain organelles can be visualized in individual cells while hard X-ray microscopes excel in imaging of larger complex biological tissue. The field of view of these instruments is typically 10(3) times the spatial resolution. We exploit the assets of the hard X-ray sub-micrometer imaging and extend the standard approach by widening the effective field of view to match the size of the sample. We show that global tomography of biological systems exceeding several times the field of view is feasible also at the nanoscale with moderate radiation dose. We address the performance issues and limitations of the TOMCAT full-field microscope and more generally for Zernike phase contrast imaging. Two biologically relevant systems were investigated. The first being the largest known bacteria (Thiomargarita namibiensis), the second is a small myriapod species (Pauropoda sp.). Both examples illustrate the capacity of the unique, structured condenser based broad-band full-field microscope to access the 3D structural details of biological systems at the nanoscale while avoiding complicated sample preparation, or even keeping the sample environment close to the natural state.
Resumo:
The root-colonizing bacterium Pseudomonas fluorescens CHA0 was used to construct an oxygen-responsive biosensor. An anaerobically inducible promoter of Pseudomonas aeruginosa, which depends on the FNR (fumarate and nitrate reductase regulation)-like transcriptional regulator ANR (anaerobic regulation of arginine deiminase and nitrate reductase pathways), was fused to the structural lacZ gene of Escherichia coli. By inserting the reporter fusion into the chromosomal attTn7 site of P. fluorescens CHA0 by using a mini-Tn7 transposon, the reporter strain, CHA900, was obtained. Grown in glutamate-yeast extract medium in an oxystat at defined oxygen levels, the biosensor CHA900 responded to a decrease in oxygen concentration from 210 x 10(2) Pa to 2 x 10(2) Pa of O(2) by a nearly 100-fold increase in beta-galactosidase activity. Half-maximal induction of the reporter occurred at about 5 x 10(2) Pa. This dose response closely resembles that found for E. coli promoters which are activated by the FNR protein. In a carbon-free buffer or in bulk soil, the biosensor CHA900 still responded to a decrease in oxygen concentration, although here induction was about 10 times lower and the low oxygen response was gradually lost within 3 days. Introduced into a barley-soil microcosm, the biosensor could report decreasing oxygen concentrations in the rhizosphere for a 6-day period. When the water content in the microcosm was raised from 60% to 85% of field capacity, expression of the reporter gene was elevated about twofold above a basal level after 2 days of incubation, suggesting that a water content of 85% caused mild anoxia. Increased compaction of the soil was shown to have a faster and more dramatic effect on the expression of the oxygen reporter than soil water content alone, indicating that factors other than the water-filled pore space influenced the oxygen status of the soil. These experiments illustrate the utility of the biosensor for detecting low oxygen concentrations in the rhizosphere and other soil habitats.
Resumo:
Actinic keratosis (AK) affects millions of people worldwide, and its prevalence continues to increase. AK lesions are caused by chronic ultraviolet radiation exposure, and the presence of two or more AK lesions along with photodamage should raise the consideration of a diagnosis of field cancerization. Effective treatment of individual lesions as well as field cancerization is essential for good long-term outcomes. The Swiss Registry of Actinic Keratosis Treatment (REAKT) Working Group has developed clinical practice guidelines for the treatment of field cancerization in patients who present with AK. These guidelines are intended to serve as a resource for physicians as to the most appropriate treatment and management of AK and field cancerization based on current evidence and the combined practical experience of the authors. Treatment of AK and field cancerization should be driven by consideration of relevant patient, disease, and treatment factors, and appropriate treatment decisions will differ from patient to patient. Prevention measures and screening recommendations are discussed, and special considerations related to management of immunocompromised patients are provided.
Resumo:
OBJECTIVE: Mild neurocognitive disorders (MND) affect a subset of HIV+ patients under effective combination antiretroviral therapy (cART). In this study, we used an innovative multi-contrast magnetic resonance imaging (MRI) approach at high-field to assess the presence of micro-structural brain alterations in MND+ patients. METHODS: We enrolled 17 MND+ and 19 MND- patients with undetectable HIV-1 RNA and 19 healthy controls (HC). MRI acquisitions at 3T included: MP2RAGE for T1 relaxation times, Magnetization Transfer (MT), T2* and Susceptibility Weighted Imaging (SWI) to probe micro-structural integrity and iron deposition in the brain. Statistical analysis used permutation-based tests and correction for family-wise error rate. Multiple regression analysis was performed between MRI data and (i) neuropsychological results (ii) HIV infection characteristics. A linear discriminant analysis (LDA) based on MRI data was performed between MND+ and MND- patients and cross-validated with a leave-one-out test. RESULTS: Our data revealed loss of structural integrity and micro-oedema in MND+ compared to HC in the global white and cortical gray matter, as well as in the thalamus and basal ganglia. Multiple regression analysis showed a significant influence of sub-cortical nuclei alterations on the executive index of MND+ patients (p = 0.04 he and R(2) = 95.2). The LDA distinguished MND+ and MND- patients with a classification quality of 73% after cross-validation. CONCLUSION: Our study shows micro-structural brain tissue alterations in MND+ patients under effective therapy and suggests that multi-contrast MRI at high field is a powerful approach to discriminate between HIV+ patients on cART with and without mild neurocognitive deficits.
Resumo:
A test kit based on living, lyophilized bacterial bioreporters emitting bioluminescence as a response to arsenite and arsenate was applied during a field campaign in six villages across Bangladesh. Bioreporter field measurements of arsenic in groundwater from tube wells were in satisfying agreement with the results of spectroscopic analyses of the same samples conducted in the lab. The practicability of the bioreporter test in terms of logistics and material requirements, suitability for high sample throughput, and waste disposal was much better than that of two commercial chemical test kits that were included as references. The campaigns furthermore demonstrated large local heterogeneity of arsenic in groundwater, underscoring the use of well switching as an effective remedy to avoid high arsenic exposure.
Resumo:
This study examines the role of glucose and lactate as energy substrates to sustain synaptic vesicle cycling. Synaptic vesicle turnover was assessed in a quantitative manner by fluorescence microscopy in primary cultures of mouse cortical neurons. An electrode-equipped perfusion chamber was used to stimulate cells both by electrical field and potassium depolarization during image acquisition. An image analysis procedure was elaborated to select in an unbiased manner synaptic boutons loaded with the fluorescent dye N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide (FM1-43). Whereas a minority of the sites fully released their dye content following electrical stimulation, others needed subsequent K(+) depolarization to achieve full release. This functional heterogeneity was not significantly altered by the nature of metabolic substrates. Repetitive stimulation sequences of FM1-43 uptake and release were then performed in the absence of any metabolic substrate and showed that the number of active sites dramatically decreased after the first cycle of loading/unloading. The presence of 1 mM glucose or lactate was sufficient to sustain synaptic vesicle cycling under these conditions. Moreover, both substrates were equivalent for recovery of function after a phase of decreased metabolic substrate availability. Thus, lactate appears to be equivalent to glucose for sustaining synaptic vesicle turnover in cultured cortical neurons during activity.
What is "clinical data"? Why and how can they be collected during field surveys on medicinal plants?
Resumo:
ETHNOPHARMACOLOGICAL RELEVANCE: "Reverse pharmacology", also called "bedside-to-bench" or "field to pharmacy" approach, is a research process starting with documentation of clinical outcome as observed by patients with different therapeutic regimens. The treatment most significantly associated with cure is selected for future studies: first, clinical safety and efficacy; then in vivo and vitro studies. Some clinical data, i.e. details on patient status and progress, can be collected during ethnobotanical surveys; they will help clinical researchers and, once effectiveness and safety are established, will also help users of traditional medicine make safer and more effective choices. To gather clinical data successfully, ethnopharmacologists need to be backed by an appropriate team of specialists in medicine and epidemiology. Ethnopharmacologists can also gather important data on traditional medicine safety. MATERIALS AND METHODS: The first step is to create a consensus on the meaning of "clinical data", their interest and importance. An understanding of why "a cure is not a proof of effectiveness" is a starting point to avoid faulty interpretation of the clinical observations. RESULTS: Experience showed that, with the "bedside-to-bench" approach, a treatment derived from traditional recipe can be scientifically validated (in terms of safety and effectiveness) with a cost of less than a million euros, thus providing an end-product that is affordable, available and sustainable. CONCLUSIONS: With rigorous clinical study results, medicinal plant users gain the possibility to refine heath strategies. The field surveyor may gain a better relationship with the population, once she/he is seen as bringing information useful for the quality of care in the community.
Resumo:
Secondary contact zones have the potential to shed light on the mode and rate at which reproductive isolation accumulates during allopatric speciation. We investigated the population genetics of a contact zone between two highly divergent lineages of field voles (Microtus agrestis) in the Swiss Jura mountains. To shed light on the processes underlying introgression, we used maternally, paternally, and bi-parentally inherited markers. Though the two lineages maintained a strong genetic structure, we found some hybrids and evidence of gene flow. The extent of introgression varied with the mode of inheritance, being highest for mtDNA and absent for the Y chromosome. In addition, introgression was asymmetric, occurring only from the Northern to the Southern lineage. Both patterns seem parsimoniously explained by neutral processes linked to differences in effective sizes and sex-biased dispersal rates. The lineage with lower effective population size was also the more introgressed, and the mode-of-inheritance effect correlated with the male-biased dispersal rate of microtine rodents. We cannot exclude, however, that Haldane's effect contributed to the latter, as we found a marginally significant deficit in males (the heterogametic sex) among hybrids. We propose a possible demographic scenario to account for the patterns documented, and empirical extensions to further investigate this contact zone.
Resumo:
Due to practical difficulties in obtaining direct genetic estimates of effective sizes, conservation biologists have to rely on so-called 'demographic models' which combine life-history and mating-system parameters with F-statistics in order to produce indirect estimates of effective sizes. However, for the same practical reasons that prevent direct genetic estimates, the accuracy of demographic models is difficult to evaluate. Here we use individual-based, genetically explicit computer simulations in order to investigate the accuracy of two such demographic models aimed at investigating the hierarchical structure of populations. We show that, by and large, these models provide good estimates under a wide range of mating systems and dispersal patterns. However, one of the models should be avoided whenever the focal species' breeding system approaches monogamy with no sex bias in dispersal or when a substructure within social groups is suspected because effective sizes may then be strongly overestimated. The timing during the life cycle at which F-statistics are evaluated is also of crucial importance and attention should be paid to it when designing field sampling since different demographic models assume different timings. Our study shows that individual-based, genetically explicit models provide a promising way of evaluating the accuracy of demographic models of effective size and delineate their field of applicability.
Resumo:
The functional avidity is determined by exposing T-cell populations in vitro to different amounts of cognate antigen. T-cells with high functional avidity respond to low antigen doses. This in vitro measure is thought to correlate well with the in vivo effector capacity of T-cells. We here present the multifaceted factors determining and influencing the functional avidity of T-cells. We outline how changes in the functional avidity can occur over the course of an infection. This process, known as avidity maturation, can occur despite the fact that T-cells express a fixed TCR. Furthermore, examples are provided illustrating the importance of generating T-cell populations that exhibit a high functional avidity when responding to an infection or tumors. Furthermore, we discuss whether criteria based on which we evaluate an effective T-cell response to acute infections can also be applied to chronic infections such as HIV. Finally, we also focus on observations that high-avidity T-cells show higher signs of exhaustion and facilitate the emergence of virus escape variants. The review summarizes our current understanding of how this may occur as well as how T-cells of different functional avidity contribute to antiviral and anti-tumor immunity. Enhancing our knowledge in this field is relevant for tumor immunotherapy and vaccines design.
Resumo:
Sexual selection in lek-breeding species might drastically lower male effective population size, with potentially important consequences for evolutionary and conservation biology. Using field-monitoring and parental-assignment methods, we analyzed sex-specific variances in breeding success in a population of European treefrogs, to (1) help understanding the dynamics of genetic variance at sex-specific loci, and (2) better quantify the risk posed by genetic drift in this species locally endangered by habitat fragmentation. The variance in male mating success turned out to be markedly lower than values obtained from other amphibian species with polygamous mating systems. The ratio of effective breeding size to census breeding size was only slightly lower in males (0.44) than in females (0.57), in line with the patterns of genetic diversity previously reported from H. arborea sex chromosomes. Combining our results with data on age at maturity and adult survival, we show that the negative effect of the mating system is furthermore compensated by the effect of delayed maturity, so that the estimated instantaneous effective size broadly corresponded to census breeding size. We conclude that the lek-breeding system of treefrogs impacts only weakly the patterns of genetic diversity on sex-linked genes and the ability of natural populations to resist genetic drift.
Resumo:
This study examined the effects of ibotenic acid-induced lesions of the hippocampus, subiculum and hippocampus +/- subiculum upon the capacity of rats to learn and perform a series of allocentric spatial learning tasks in an open-field water maze. The lesions were made by infusing small volumes of the neurotoxin at a total of 26 (hippocampus) or 20 (subiculum) sites intended to achieve complete target cell loss but minimal extratarget damage. The regional extent and axon-sparing nature of these lesions was evaluated using both cresyl violet and Fink - Heimer stained sections. The behavioural findings indicated that both the hippocampus and subiculum lesions caused impairment to the initial postoperative acquisition of place navigation but did not prevent eventual learning to levels of performance almost as effective as those of controls. However, overtraining of the hippocampus + subiculum lesioned rats did not result in significant place learning. Qualitative observations of the paths taken to find a hidden escape platform indicated that different strategies were deployed by hippocampal and subiculum lesioned groups. Subsequent training on a delayed matching to place task revealed a deficit in all lesioned groups across a range of sample choice intervals, but the subiculum lesioned group was less impaired than the group with the hippocampal lesion. Finally, unoperated control rats given both the initial training and overtraining were later given either a hippocampal lesion or sham surgery. The hippocampal lesioned rats were impaired during a subsequent retention/relearning phase. Together, these findings suggest that total hippocampal cell loss may cause a dual deficit: a slower rate of place learning and a separate navigational impairment. The prospect of unravelling dissociable components of allocentric spatial learning is discussed.
Resumo:
This study considers the question of the relationship between private labour regulation and workers' capacity to take collective action through the lens of an empirical study of the International Finance Corporation's (IFC) 'performance standards' system of social and environmental conditionality. The study covered some 150 IFC client businesses in four world regions, drawing on data made public by the IFC as well as the results of a dedicated field survey that gathered information directly from workers, managers and union representatives. The study found that the application of the performance standards system has had remarkably little impact on union membership and social dialogue. In those few cases where change could be causally linked to the standards, the effect depended on the presence of workers' organizations that already had the capacity to take effective action on behalf of their members. The study also uncovered some prima facie evidence of breaches of freedom of association rights occurring with no reaction from IFC. The study concludes that the lack of impact is largely due to the private contractual structure that supposedly guarantees standards compliance.
Resumo:
Engineered nanomaterials (ENMs) exhibit special physicochemical properties and thus are finding their way into an increasing number of industries, enabling products with improved properties. Their increased use brings a greater likelihood of exposure to the nanoparticles (NPs) that could be released during the life cycle of nano-abled products. The field of nanotoxicology has emerged as a consequence of the development of these novel materials, and it has gained ever more attention due to the urgent need to gather information on exposure to them and to understand the potential hazards they engender. However, current studies on nanotoxicity tend to focus on pristine ENMs, and they use these toxicity results to generalize risk assessments on human exposure to NPs. ENMs released into the environment can interact with their surroundings, change characteristics and exhibit toxicity effects distinct from those of pristine ENMs. Furthermore, NPs' large surface areas provide extra-large potential interfaces, thus promoting more significant interactions between NPs and other co-existing species. In such processes, other species can attach to a NP's surface and modify its surface functionality, in addition to the toxicity in normally exhibits. One particular occupational health scenario involves NPs and low-volatile organic compounds (LVOC), a common type of pollutant existing around many potential sources of NPs. LVOC can coat a NP's surface and then dominate its toxicity. One important mechanism in nanotoxicology is the creation of reactive oxygen species (ROS) on a NP's surface; LVOC can modify the production of these ROS. In summary, nanotoxicity research should not be limited to the toxicity of pristine NPs, nor use their toxicity to evaluate the health effects of exposure to environmental NPs. Instead, the interactions which NPs have with other environmental species should also be considered and researched. The potential health effects of exposure to NPs should be derived from these real world NPs with characteristics modified by the environment and their distinct toxicity. Failure to suitably address toxicity results could lead to an inappropriate treatment of nano- release, affect the environment and public health and put a blemish on the development of sustainable nanotechnologies as a whole. The main objective of this thesis is to demonstrate a process for coating NP surfaces with LVOC using a well-controlled laboratory design and, with regard to these NPs' capacity to generate ROS, explore the consequences of changing particle toxicity. The dynamic coating system developed yielded stable and replicable coating performance, simulating an important realistic scenario. Clear changes in the size distribution of airborne NPs were observed using a scanning mobility particle sizer, were confirmed using both liquid nanotracking analyses and transmission electron microscopy (TEM) imaging, and were verified thanks to the LVOC coating. Coating thicknesses corresponded to the amount of coating material used and were controlled using the parameters of the LVOC generator. The capacity of pristine silver NPs (Ag NPs) to generate ROS was reduced when they were given a passive coating of inert paraffin: this coating blocked the reactive zones on the particle surfaces. In contrast, a coating of active reduced-anthraquinone contributed to redox reactions and generated ROS itself, despite the fact that ROS generation due to oxidation by Ag NPs themselves was quenched. Further objectives of this thesis included development of ROS methodology and the analysis of ROS case studies. Since the capacity of NPs to create ROS is an important effect in nanotoxicity, we attempted to refine and standardize the use of 2'7-dichlorodihydrofluorescin (DCFH) as a chemical tailored for the characterization of NPs' capacity for ROS generation. Previous studies had reported a wide variety of results, which were due to a number of insufficiently well controlled factors. We therefore cross-compared chemicals and concentrations, explored ways of dispersing NP samples in liquid solutions, identified sources of contradictions in the literature and investigated ways of reducing artificial results. The most robust results were obtained by sonicating an optimal sample of NPs in a DCFH-HRP solution made of 5,M DCFH and 0.5 unit/ml horseradish peroxidase (HRP). Our findings explained how the major reasons for previously conflicting results were the different experimental approaches used and the potential artifacts appearing when using high sample concentrations. Applying our advanced DCFH protocol with other physicochemical characterizations and biological analyses, we conducted several case studies, characterizing aerosols and NP samples. Exposure to aged brake wear dust engenders a risk of potential deleterious health effects in occupational scenarios. We performed microscopy and elemental analyses, as well as ROS measurements, with acellular and cellular DCFH assays. TEM images revealed samples to be heterogeneous mixtures with few particles in the nano-scale. Metallic and non-metallic elements were identified, primarily iron, carbon and oxygen. Moderate amounts of ROS were detected in the cell-free fluorescent tests; however, exposed cells were not dramatically activated. In addition to their highly aged state due to oxidation, the reason aged brake wear samples caused less oxidative stress than fresh brake wear samples may be because of their larger size and thus smaller relative reactive surface area. Other case studies involving welding fumes and differently charged NPs confirmed the performance of our DCFH assay and found ROS generation linked to varying characteristics, especially the surface functionality of the samples. Les nanomatériaux manufacturés (ENM) présentent des propriétés physico-chimiques particulières et ont donc trouvés des applications dans un nombre croissant de secteurs, permettant de réaliser des produits ayant des propriétés améliorées. Leur utilisation accrue engendre un plus grand risque pour les êtres humains d'être exposés à des nanoparticules (NP) qui sont libérées au long de leur cycle de vie. En conséquence, la nanotoxicologie a émergé et gagné de plus en plus d'attention dû à la nécessité de recueillir les renseignements nécessaires sur l'exposition et les risques associés à ces nouveaux matériaux. Cependant, les études actuelles sur la nanotoxicité ont tendance à se concentrer sur les ENM et utiliser ces résultats toxicologiques pour généraliser l'évaluation des risques sur l'exposition humaine aux NP. Les ENM libérés dans l'environnement peuvent interagir avec l'environnement, changeant leurs caractéristiques, et montrer des effets de toxicité distincts par rapport aux ENM originaux. Par ailleurs, la grande surface des NP fournit une grande interface avec l'extérieur, favorisant les interactions entre les NP et les autres espèces présentes. Dans ce processus, d'autres espèces peuvent s'attacher à la surface des NP et modifier leur fonctionnalité de surface ainsi que leur toxicité. Un scénario d'exposition professionnel particulier implique à la fois des NP et des composés organiques peu volatils (LVOC), un type commun de polluant associé à de nombreuses sources de NP. Les LVOC peuvent se déposer sur la surface des NP et donc dominer la toxicité globale de la particule. Un mécanisme important en nanotoxicologie est la création d'espèces réactives d'oxygène (ROS) sur la surface des particules, et les LVOC peuvent modifier cette production de ROS. En résumé, la recherche en nanotoxicité ne devrait pas être limitée à la toxicité des ENM originaux, ni utiliser leur toxicité pour évaluer les effets sur la santé de l'exposition aux NP de l'environnement; mais les interactions que les NP ont avec d'autres espèces environnementales doivent être envisagées et étudiées. Les effets possibles sur la santé de l'exposition aux NP devraient être dérivés de ces NP aux caractéristiques modifiées et à la toxicité distincte. L'utilisation de résultats de toxicité inappropriés peut conduire à une mauvaise prise en charge de l'exposition aux NP, de détériorer l'environnement et la santé publique et d'entraver le développement durable des industries de la nanotechnologie dans leur ensemble. L'objectif principal de cette thèse est de démontrer le processus de déposition des LVOC sur la surface des NP en utilisant un environnement de laboratoire bien contrôlé et d'explorer les conséquences du changement de toxicité des particules sur leur capacité à générer des ROS. Le système de déposition dynamique développé a abouti à des performances de revêtement stables et reproductibles, en simulant des scénarios réalistes importants. Des changements clairs dans la distribution de taille des NP en suspension ont été observés par spectrométrie de mobilité électrique des particules, confirmé à la fois par la méthode dite liquid nanotracking analysis et par microscopie électronique à transmission (MET), et a été vérifié comme provenant du revêtement par LVOC. La correspondance entre l'épaisseur de revêtement et la quantité de matériau de revêtement disponible a été démontré et a pu être contrôlé par les paramètres du générateur de LVOC. La génération de ROS dû aux NP d'argent (Ag NP) a été diminuée par un revêtement passif de paraffine inerte bloquant les zones réactives à la surface des particules. Au contraire, le revêtement actif d'anthraquinone réduit a contribué aux réactions redox et a généré des ROS, même lorsque la production de ROS par oxydation des Ag NP avec l'oxygène a été désactivé. Les objectifs associés comprennent le développement de la méthodologie et des études de cas spécifique aux ROS. Etant donné que la capacité des NP à générer des ROS contribue grandement à la nanotoxicité, nous avons tenté de définir un standard pour l'utilisation de 27- dichlorodihydrofluorescine (DCFH) adapté pour caractériser la génération de ROS par les NP. Des etudes antérieures ont rapporté une grande variété de résultats différents, ce qui était dû à un contrôle insuffisant des plusieurs facteurs. Nous avons donc comparé les produits chimiques et les concentrations utilisés, exploré les moyens de dispersion des échantillons HP en solution liquide, investigué les sources de conflits identifiées dans les littératures et étudié les moyens de réduire les résultats artificiels. De très bon résultats ont été obtenus par sonication d'une quantité optimale d'échantillons de NP en solution dans du DCFH-HRP, fait de 5 nM de DCFH et de 0,5 unité/ml de Peroxydase de raifort (HRP). Notre étude a démontré que les principales raisons causant les conflits entre les études précédemment conduites dans la littérature étaient dues aux différentes approches expérimentales et à des artefacts potentiels dus à des concentrations élevées de NP dans les échantillons. Utilisant notre protocole DCFH avancé avec d'autres caractérisations physico-chimiques et analyses biologiques, nous avons mené plusieurs études de cas, caractérisant les échantillons d'aérosols et les NP. La vielle poussière de frein en particulier présente un risque élevé d'exposition dans les scénarios professionnels, avec des effets potentiels néfastes sur la santé. Nous avons effectué des analyses d'éléments et de microscopie ainsi que la mesure de ROS avec DCFH cellulaire et acellulaire. Les résultats de MET ont révélé que les échantillons se présentent sous la forme de mélanges de particules hétérogènes, desquels une faible proportion se trouve dans l'échelle nano. Des éléments métalliques et non métalliques ont été identifiés, principalement du fer, du carbone et de l'oxygène. Une quantité modérée de ROS a été détectée dans le test fluorescent acellulaire; cependant les cellules exposées n'ont pas été très fortement activées. La raison pour laquelle les échantillons de vielle poussière de frein causent un stress oxydatif inférieur par rapport à la poussière de frein nouvelle peut-être à cause de leur plus grande taille engendrant une surface réactive proportionnellement plus petite, ainsi que leur état d'oxydation avancé diminuant la réactivité. D'autres études de cas sur les fumées de soudage et sur des NP différemment chargées ont confirmé la performance de notre test DCFH et ont trouvé que la génération de ROS est liée à certaines caractéristiques, notamment la fonctionnalité de surface des échantillons.
Resumo:
The purpose of this article is to provide policy guidance on how to assess the capacity of minor adolescents for autonomous decision-making without a third party authorization, in the field of clinical care. In June 2014, a two-day meeting gathered 20 professionals from all continents, working in the field of adolescent medicine, neurosciences, developmental and clinical psychology, sociology, ethics, and law. Formal presentations and discussions were based on a literature search and the participants' experience. The assessment of adolescent decision-making capacity includes the following: (1) a review of the legal context consistent with the principles of the Convention on the Rights of the Child; (2) an empathetic relationship between the adolescent and the health care professional/team; (3) the respect of the adolescent's developmental stage and capacities; (4) the inclusion, if relevant, of relatives, peers, teachers, or social and mental health providers with the adolescent's consent; (5) the control of coercion and other social forces that influence decision-making; and (6) a deliberative stepwise appraisal of the adolescent's decision-making process. This stepwise approach, already used among adults with psychiatric disorders, includes understanding the different facets of the given situation, reasoning on the involved issues, appreciating the outcomes linked with the decision(s), and expressing a choice. Contextual and psychosocial factors play pivotal roles in the assessment of adolescents' decision-making capacity. The evaluation must be guided by a well-established procedure, and health professionals should be trained accordingly. These proposals are the first to have been developed by a multicultural, multidisciplinary expert panel.