18 resultados para dynamical scaling
em Université de Lausanne, Switzerland
Resumo:
The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.
Resumo:
We use numerical simulations to investigate how the chain length and topology of freely fluctuating knotted polymer rings affect their various spatial characteristics such as the radius of the smallest sphere enclosing momentary configurations of simulated polymer chains. We describe how the average value of a characteristic changes with the chain size and how this change depends on the topology of the modeled polymers. Although the scaling profiles of a spatial characteristic for distinct knot types do not intersect (at least, in the range of our data), the profiles for nontrivial knots intersect the corresponding profile obtained for phantom polymers, i.e., those that are free to explore all available topological states. For each knot type, this point of intersection defines its equilibrium length with respect to the spatial characteristic. At this chain length, a polymer forming a given knot type will not tend to increase or decrease. on average, the value of the spatial characteristic when the polymer is released from its topological constraint. We show interrelations between equilibrium lengths defined with respect to spatial characteristics of different character and observe that they are related to the lengths of ideal geometric configurations of the corresponding knot types.
The Dynamical Systems Approach to Cognition. Studies of Nonlinear Phenomena in Life Science - Vol 10
Resumo:
Temporal dynamical analysis in fire sequences recorded from 1969 to 2008 in Canton Ticino (Switzerland) was carried out by using the Allan Factor statistics. The obtained results show the presence of daily periodicities, superimposed to two time-scaling regimes. The daily cycle vanishes for sequences of higher altitude fires, for which a single scaling behaviour is observed.
Resumo:
We present here a nonbiased probabilistic method that allows us to consistently analyze knottedness of linear random walks with up to several hundred noncorrelated steps. The method consists of analyzing the spectrum of knots formed by multiple closures of the same open walk through random points on a sphere enclosing the walk. Knottedness of individual "frozen" configurations of linear chains is therefore defined by a characteristic spectrum of realizable knots. We show that in the great majority of cases this method clearly defines the dominant knot type of a walk, i.e., the strongest component of the spectrum. In such cases, direct end-to-end closure creates a knot that usually coincides with the knot type that dominates the random closure spectrum. Interestingly, in a very small proportion of linear random walks, the knot type is not clearly defined. Such walks can be considered as residing in a border zone of the configuration space of two or more knot types. We also characterize the scaling behavior of linear random knots.
Resumo:
Morphogen gradients infer cell fate as a function of cellular position. Experiments in Drosophila embryos have shown that the Bicoid (Bcd) gradient is precise and exhibits some degree of scaling. We present experimental results on the precision of Bcd target genes for embryos with a single, double or quadruple dose of bicoid demonstrating that precision is highest at mid-embryo and position dependent, rather than gene dependent. This confirms that the major contribution to precision is achieved already at the Bcd gradient formation. Modeling this dynamic process, we investigate precision for inter-embryo fluctuations in different parameters affecting gradient formation. Within our modeling framework, the observed precision can only be achieved by a transient Bcd profile. Studying different extensions of our modeling framework reveals that scaling is generally position dependent and decreases toward the posterior pole. Our measurements confirm this trend, indicating almost perfect scaling except for anterior most expression domains, which overcompensate fluctuations in embryo length.
Resumo:
Defining the limits of an urban agglomeration is essential both for fundamental and applied studies in quantitative and theoretical geography. A simple and consistent way for defining such urban clusters is important for performing different statistical analysis and comparisons. Traditionally, agglomerations are defined using a rather qualitative approach based on various statistical measures. This definition varies generally from one country to another, and the data taken into account are different. In this paper, we explore the use of the City Clustering Algorithm (CCA) for the agglomeration definition in Switzerland. This algorithm provides a systemic and easy way to define an urban area based only on population data. The CCA allows the specification of the spatial resolution for defining the urban clusters. The results from different resolutions are compared and analysed, and the effect of filtering the data investigated. Different scales and parameters allow highlighting different phenomena. The study of Zipf's law using the visual rank-size rule shows that it is valid only for some specific urban clusters, inside a narrow range of the spatial resolution of the CCA. The scale where emergence of one main cluster occurs can also be found in the analysis using Zipf's law. The study of the urban clusters at different scales using the lacunarity measure - a complementary measure to the fractal dimension - allows to highlight the change of scale at a given range.
Resumo:
Biological scaling analyses employing the widely used bivariate allometric model are beset by at least four interacting problems: (1) choice of an appropriate best-fit line with due attention to the influence of outliers; (2) objective recognition of divergent subsets in the data (allometric grades); (3) potential restrictions on statistical independence resulting from phylogenetic inertia; and (4) the need for extreme caution in inferring causation from correlation. A new non-parametric line-fitting technique has been developed that eliminates requirements for normality of distribution, greatly reduces the influence of outliers and permits objective recognition of grade shifts in substantial datasets. This technique is applied in scaling analyses of mammalian gestation periods and of neonatal body mass in primates. These analyses feed into a re-examination, conducted with partial correlation analysis, of the maternal energy hypothesis relating to mammalian brain evolution, which suggests links between body size and brain size in neonates and adults, gestation period and basal metabolic rate. Much has been made of the potential problem of phylogenetic inertia as a confounding factor in scaling analyses. However, this problem may be less severe than suspected earlier because nested analyses of variance conducted on residual variation (rather than on raw values) reveals that there is considerable variance at low taxonomic levels. In fact, limited divergence in body size between closely related species is one of the prime examples of phylogenetic inertia. One common approach to eliminating perceived problems of phylogenetic inertia in allometric analyses has been calculation of 'independent contrast values'. It is demonstrated that the reasoning behind this approach is flawed in several ways. Calculation of contrast values for closely related species of similar body size is, in fact, highly questionable, particularly when there are major deviations from the best-fit line for the scaling relationship under scrutiny.