3 resultados para dwellings
em Université de Lausanne, Switzerland
Resumo:
Crocidura russula is restricted to the vicinity of human dwellings in the northern parts of its range and in the mountain regions of Central and Western Europe. In order to better understand the causes of such a distribution, a population was studied in a rural mountain habitat (750 m above sea level), where the species was found almost exclusively in the neighbourhood of human dwellings. The study was conducted on a 2000 m2 area, over a period of 20 months, by live-trapping and radioactive tracking. The abundance, the local distribution and the behaviour of the shrews vary greatly throughout the year. In summer, they chiefly inhabit areas with a dense herbaceous cover or shruby vegetation; they are mainly active at ground level, in the litter. In autumn, changes in the environmental conditions (lowering of temperatures, subsidence of the herbaceous vegetation, presence of snow) create important energetic problems. At that time, the shrews gradually become more active around and inside compost-heaps and buildings. The microclimate of such environments is mild and prey are numerous. The winter population is reduced (reaching its lowest level in late winter) and consists only of shrews frequenting these sites. The observed spatial distribution is the result of the energetic dependence of the wintering shrews on human dwellings and their surroundings. This dependence is probably related to the physiological characteristics of the species. In the prospected region, Crocidura russula is the only shrew which regularly takes advantage of man-made habitats; the maintenance of the species in the rural mountain enviroment is probably favoured by the social organization of the populations in winter. The other native Soricids are observed only occasionaly int he neighbourhood of human dwellings.
Resumo:
PURPOSE: In Switzerland, nationwide large-scale radon surveys have been conducted since the early 1980s to establish the distribution of indoor radon concentrations (IRC). The aim of this work was to study the factors influencing IRC in Switzerland using univariate analyses that take into account biases caused by spatial irregularities of sampling. METHODS: About 212,000 IRC measurements carried out in more than 136,000 dwellings were available for this study. A probability map to assess risk of exceeding an IRC of 300 Bq/m(3) was produced using basic geostatistical techniques. Univariate analyses of IRC for different variables, namely the type of radon detector, various building characteristics such as foundation type, year of construction and building type, as well as the altitude, the average outdoor temperature during measurement and the lithology, were performed comparing 95% confidence intervals among classes of each variable. Furthermore, a map showing the spatial aggregation of the number of measurements was generated for each class of variable in order to assess biases due to spatially irregular sampling. RESULTS: IRC measurements carried out with electret detectors were 35% higher than measurements performed with track detectors. Regarding building characteristics, the IRC of apartments are significantly lower than individual houses. Furthermore, buildings with concrete foundations have the lowest IRC. A significant decrease in IRC was found in buildings constructed after 1900 and again after 1970. Moreover, IRC decreases at higher outdoor temperatures. There is also a tendency to have higher IRC with altitude. Regarding lithology, carbonate rock in the Jura Mountains produces significantly higher IRC, almost by a factor of 2, than carbonate rock in the Alps. Sedimentary rock and sediment produce the lowest IRC while carbonate rock from the Jura Mountains and igneous rock produce the highest IRC. Potential biases due to spatially unbalanced sampling of measurements were identified for several influencing factors. CONCLUSIONS: Significant associations were found between IRC and all variables under study. However, we showed that the spatial distribution of samples strongly affected the relevance of those associations. Therefore, future methods to estimate local radon hazards should take the multidimensionality of the process of IRC into account.
Resumo:
The present research deals with an important public health threat, which is the pollution created by radon gas accumulation inside dwellings. The spatial modeling of indoor radon in Switzerland is particularly complex and challenging because of many influencing factors that should be taken into account. Indoor radon data analysis must be addressed from both a statistical and a spatial point of view. As a multivariate process, it was important at first to define the influence of each factor. In particular, it was important to define the influence of geology as being closely associated to indoor radon. This association was indeed observed for the Swiss data but not probed to be the sole determinant for the spatial modeling. The statistical analysis of data, both at univariate and multivariate level, was followed by an exploratory spatial analysis. Many tools proposed in the literature were tested and adapted, including fractality, declustering and moving windows methods. The use of Quan-tité Morisita Index (QMI) as a procedure to evaluate data clustering in function of the radon level was proposed. The existing methods of declustering were revised and applied in an attempt to approach the global histogram parameters. The exploratory phase comes along with the definition of multiple scales of interest for indoor radon mapping in Switzerland. The analysis was done with a top-to-down resolution approach, from regional to local lev¬els in order to find the appropriate scales for modeling. In this sense, data partition was optimized in order to cope with stationary conditions of geostatistical models. Common methods of spatial modeling such as Κ Nearest Neighbors (KNN), variography and General Regression Neural Networks (GRNN) were proposed as exploratory tools. In the following section, different spatial interpolation methods were applied for a par-ticular dataset. A bottom to top method complexity approach was adopted and the results were analyzed together in order to find common definitions of continuity and neighborhood parameters. Additionally, a data filter based on cross-validation was tested with the purpose of reducing noise at local scale (the CVMF). At the end of the chapter, a series of test for data consistency and methods robustness were performed. This lead to conclude about the importance of data splitting and the limitation of generalization methods for reproducing statistical distributions. The last section was dedicated to modeling methods with probabilistic interpretations. Data transformation and simulations thus allowed the use of multigaussian models and helped take the indoor radon pollution data uncertainty into consideration. The catego-rization transform was presented as a solution for extreme values modeling through clas-sification. Simulation scenarios were proposed, including an alternative proposal for the reproduction of the global histogram based on the sampling domain. The sequential Gaussian simulation (SGS) was presented as the method giving the most complete information, while classification performed in a more robust way. An error measure was defined in relation to the decision function for data classification hardening. Within the classification methods, probabilistic neural networks (PNN) show to be better adapted for modeling of high threshold categorization and for automation. Support vector machines (SVM) on the contrary performed well under balanced category conditions. In general, it was concluded that a particular prediction or estimation method is not better under all conditions of scale and neighborhood definitions. Simulations should be the basis, while other methods can provide complementary information to accomplish an efficient indoor radon decision making.