9 resultados para diterpenic adducts
em Université de Lausanne, Switzerland
Resumo:
To investigate the role of the coreceptor CD8 and lipid rafts in cytotoxic T lymphocyte (CTL) activation, we used soluble mono-and multimeric H-2Kd-peptide complexes and cloned S14 CTL specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite (PbCS) peptide 252-260 [PbCS(ABA)]. We report that activation of CTL in suspension requires multimeric Kd-PbCS(ABA) complexes co-engaging TCR and CD8. Using TCR ligand photo-cross-linking, we find that monomeric Kd-PbCS(ABA) complexes promote association of TCR/CD3 with CD8/p56lck. Dimerization of these adducts results in activation of p56lck in lipid rafts, where phosphatases are excluded. Additional cross-linking further increases p56lck kinase activity, induces translocation of TCR/CD3 and other signaling molecules to lipid rafts and intracellular calcium mobilization. These events are prevented by blocking Src kinases or CD8 binding to TCR-associated Kd molecules, indicating that CTL activation is initiated by cross-linking of CD8-associated p56lck. They are also inhibited by methyl-beta-cyclodextrin, which disrupts rafts and by dipalmitoyl phosphatidylethanolamine, which interferes with TCR signaling. Because efficient association of CD8 and p56lck takes place in rafts, both reagents, though in different ways, impair coupling of p56lck to TCR, thereby inhibiting the initial and essential activation of p56lck induced by cross-linking of engaged TCR.
Resumo:
RDM1 (RAD52 Motif 1) is a vertebrate protein involved in the cellular response to the anti-cancer drug cisplatin. In addition to an RNA recognition motif, RDM1 contains a small amino acid motif, named RD motif, which it shares with the recombination and repair protein, RAD52. RDM1 binds to single- and double-stranded DNA, and recognizes DNA distortions induced by cisplatin adducts in vitro. Here, we have performed an in-depth analysis of the nucleic acid-binding properties of RDM1 using gel-shift assays and electron microscopy. We show that RDM1 possesses acidic pH-dependent DNA-binding activity and that it binds RNA as well as DNA, and we present evidence from competition gel-shift experiments that RDM1 may be capable of discrimination between the two nucleic acids. Based on reported studies of RAD52, we have generated an RDM1 variant mutated in its RD motif. We find that the L119GF --> AAA mutation affects the mode of RDM1 binding to single-stranded DNA.
Resumo:
Mitochondrial reactive oxygen species generation has been implicated in the pathophysiology of ischemia-reperfusion (I/R) injury; however, its exact role and its spatial-temporal relationship with inflammation are elusive. Herein we explore the spatial-temporal relationship of oxidative/nitrative stress and inflammatory response during the course of hepatic I/R and the possible therapeutic potential of mitochondrial-targeted antioxidants, using a mouse model of segmental hepatic ischemia-reperfusion injury. Hepatic I/R was characterized by early (at 2h of reperfusion) mitochondrial injury, decreased complex I activity, increased oxidant generation in the liver or liver mitochondria, and profound hepatocellular injury/dysfunction with acute proinflammatory response (TNF-α, MIP-1α/CCL3, MIP-2/CXCL2) without inflammatory cell infiltration, followed by marked neutrophil infiltration and a more pronounced secondary wave of oxidative/nitrative stress in the liver (starting from 6h of reperfusion and peaking at 24h). Mitochondrially targeted antioxidants, MitoQ or Mito-CP, dose-dependently attenuated I/R-induced liver dysfunction, the early and delayed oxidative and nitrative stress response (HNE/carbonyl adducts, malondialdehyde, 8-OHdG, and 3-nitrotyrosine formation), and mitochondrial and histopathological injury/dysfunction, as well as delayed inflammatory cell infiltration and cell death. Mitochondrially generated oxidants play a central role in triggering the deleterious cascade of events associated with hepatic I/R, which may be targeted by novel antioxidants for therapeutic advantage.
Resumo:
The extraordinary sensitivity of CD8+ T cells to recognize antigen impinges to a large extent on the coreceptor CD8. While several studies have shown that the CD8beta chain endows CD8 with efficient coreceptor function, the molecular basis for this is enigmatic. Here we report that cell-associated CD8alphabeta, but not CD8alphaalpha or soluble CD8alphabeta, substantially increases the avidity of T cell receptor (TCR)-ligand binding. To elucidate how the cytoplasmic and transmembrane portions of CD8beta endow CD8 with efficient coreceptor function, we examined T1.4 T cell hybridomas transfected with various CD8beta constructs. T1.4 hybridomas recognize a photoreactive Plasmodium berghei circumsporozoite (PbCS) peptide derivative (PbCS (4-azidobezoic acid [ABA])) in the context of H-2K(d), and permit assessment of TCR-ligand binding by TCR photoaffinity labeling. We find that the cytoplasmic portion of CD8beta, mainly due to its palmitoylation, mediates partitioning of CD8 in lipid rafts, where it efficiently associates with p56(lck). In addition, the cytoplasmic portion of CD8beta mediates constitutive association of CD8 with TCR/CD3. The resulting TCR-CD8 adducts exhibit high affinity for major histocompatibility complex (MHC)-peptide. Importantly, because CD8alphabeta partitions in rafts, its interaction with TCR/CD3 promotes raft association of TCR/CD3. Engagement of these TCR/CD3-CD8/lck adducts by multimeric MHC-peptide induces activation of p56(lck) in rafts, which in turn phosphorylates CD3 and initiates T cell activation.
Resumo:
The wreck U Pezzo, excavated within the Saint Florent Gulf in northern Corsica was identified as the pink, Saint Etienne, a merchant ship which sank on January 31, 1769. In order to determine the composition of organic materials used to coat the hull or to waterproof different parts of the pink, a study of several samples, using molecular biomarker and carbon isotopic analysis, was initiated. The results revealed that the remarkable yellow coat, covering the outside planks of the ship's bottom under the water line, is composed of sulfur, tallow (of ox and not of cetacean origin) and black pitch which corresponds to a mixture called ``couroi'' or ``stuff'. Onboard ropes had been submitted to a tarring treatment with pitch. Hairs mixed with pitch were identified in samples collected between the two layers of the hull or under the sheathing planking. The study also provides a key model for weathering of pitch, as different degrees of degradation were found between the surface and the heart of several samples. Accordingly, molecular parameters for alteration were proposed. Furthermore novel mixed esters between terpenic and diterpenic alcohols and the free major fatty acids (C(14:0), C(16:0), C(18:0)) were detected in the yellow coat. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Malondialdehyde (MDA) is a small, ubiquitous, and potentially toxic aldehyde that is produced in vivo by lipid oxidation and that is able to affect gene expression. Tocopherol deficiency in the vitamin E2 mutant vte2-1 of Arabidopsis thaliana leads to massive lipid oxidation and MDA accumulation shortly after germination. MDA accumulation correlates with a strong visual phenotype (growth reduction, cotyledon bleaching) and aberrant GST1 (glutathione S-transferase 1) expression. We suppressed MDA accumulation in the vte2-1 background by genetically removing tri-unsaturated fatty acids. The resulting quadruple mutant, fad3-2 fad7-2 fad8 vte2-1, did not display the visual phenotype or the aberrant GST1 expression observed in vte2-1. Moreover, cotyledon bleaching in vte2-1 was chemically phenocopied by treatment of wild-type plants with MDA. These data suggest that products of tri-unsaturated fatty acid oxidation underlie the vte2-1 seedling phenotype, including cellular toxicity and gene regulation properties. Generation of the quadruple mutant facilitated the development of an in situ fluorescence assay based on the formation of adducts of MDA with 2-thiobarbituric acid at 37 degrees C. Specificity was verified by measuring pentafluorophenylhydrazine derivatives of MDA and by liquid chromatography analysis of MDA-2-thiobarbituric acid adducts. Potentially applicable to other organisms, this method allowed the localization of MDA pools throughout the body of Arabidopsis and revealed an undiscovered pool of the compound unlikely to be derived from trienoic fatty acids in the vicinity of the root tip quiescent center.
Resumo:
T cells expressing T cell receptor (TCR) complexes that lack CD3 delta, either due to deletion of the CD3 delta gene, or by replacement of the connecting peptide of the TCR alpha chain, exhibit severely impaired positive selection and TCR-mediated activation of CD8 single-positive T cells. Because the same defects have been observed in mice expressing no CD8 beta or tailless CD8 beta, we examined whether CD3 delta serves to couple TCR.CD3 with CD8. To this end we used T cell hybridomas and transgenic mice expressing the T1 TCR, which recognizes a photoreactive derivative of the PbCS 252-260 peptide in the context of H-2K(d). We report that, in thymocytes and hybridomas expressing the T1 TCR.CD3 complex, CD8 alpha beta associates with the TCR. This association was not observed on T1 hybridomas expressing only CD8 alpha alpha or a CD3 delta(-) variant of the T1 TCR. CD3 delta was selectively co-immunoprecipitated with anti-CD8 antibodies, indicating an avid association of CD8 with CD3 delta. Because CD8 alpha beta is a raft constituent, due to this association a fraction of TCR.CD3 is raft-associated. Cross-linking of these TCR-CD8 adducts results in extensive TCR aggregate formation and intracellular calcium mobilization. Thus, CD3 delta couples TCR.CD3 with raft-associated CD8, which is required for effective activation and positive selection of CD8(+) T cells.
Resumo:
A variety of cellular proteins has the ability to recognize DNA lesions induced by the anti-cancer drug cisplatin, with diverse consequences on their repair and on the therapeutic effectiveness of this drug. We report a novel gene involved in the cell response to cisplatin in vertebrates. The RDM1 gene (for RAD52 Motif 1) was identified while searching databases for sequences showing similarities to RAD52, a protein involved in homologous recombination and DNA double-strand break repair. Ablation of RDM1 in the chicken B cell line DT40 led to a more than 3-fold increase in sensitivity to cisplatin. However, RDM1-/- cells were not hypersensitive to DNA damages caused by ionizing radiation, UV irradiation, or the alkylating agent methylmethane sulfonate. The RDM1 protein displays a nucleic acid binding domain of the RNA recognition motif (RRM) type. By using gel-shift assays and electron microscopy, we show that purified, recombinant chicken RDM1 protein interacts with single-stranded DNA as well as double-stranded DNA, on which it assembles filament-like structures. Notably, RDM1 recognizes DNA distortions induced by cisplatin-DNA adducts in vitro. Finally, human RDM1 transcripts are abundant in the testis, suggesting a possible role during spermatogenesis.
Resumo:
Reactive oxygen species can initiate carcinogenesis by virtue of their capacity to react with DNA and cause mutations. Recently, it has been suggested that nitric oxide (NO) and its derivatives produced in inflamed tissues could contribute to the carcinogenesis process. Genotoxicity of NO follows its reaction with oxygen and superoxide. It can be due either to direct DNA damage or indirect DNA damage. Direct damage includes DNA base deamination, peroxynitrite-induced adducts formation and single strand breaks in the DNA. Indirect damage is due to the interaction of NO reactive species with other molecules such as amines, thiols and lipids. The efficiency of one pathway or another might depend on the cellular antioxidant status or the presence of free metals.